\documentclass[10pt,a5paper]{article} \usepackage[svgnames, rgb]{xcolor} \input{intro} \lhead{\color{gray} Шарафатдинов Камиль 192} \rhead{\color{gray} ДЗ к 27.01 (\texttt{sol0113 + sol0120})} \title{ДЗ на 27.01} \author{Шарафатдинов Камиль БПМИ-192} \date{билд: \today} % -- Here bet dragons -- \begin{document}\thispagestyle{empty} \maketitle \clearpage \setcounter{page}{1} \question{Лемма 1}{ \[ \int \frac{dx}{x^s} = \frac{1}{(1 - s)x^{s - 1}} + C \] } \[ \ br{ \frac{1}{(1 - s)x^{s - 1}} + C }' = -\frac{0 - (1 - s)(s - 2)x^{s - 2}}{(1 - s)^2 x^{2s - 2}} = \frac{1}{x^s} \qed \] \question{Лемма 2}{ \[ \int \frac{dx}{(x^2 + a^2)^2} = \frac{1}{2a^2} \ br{ \frac{x}{x^2 + a^2} + \frac{1}{a}\arctan\frac{x}{a} } + C \] } \begin{align*} \ br{ \frac{1}{2a^2} \ br{ \frac{x}{x^2 + a^2} + \frac{1}{a}\arctan\frac{x}{a} } }' = \frac{1}{2a^2} \ br{ \frac{x^2 + a^2 - 2x^2}{(x^2 + a^2)^2} + \frac{1}{x^2 + a^2} } = \frac{1}{2a^2} \ br{ \frac{2a^2}{(x^2 + a^2)^2} } = \frac{1}{(x^2 + a^2)^2} \qed \end{align*} \question{(seminar0113) 7.3}{ \[ \int \frac{dx}{x^4 + 4} = \frac{ \log | x^2 + 2x + 2 | + 2\arctan(x + 1) - \log | x^2 - 2x + 2 | + 2\arctan(x - 1) }{16} + \bar{C} \] } \[ x^4 + 4 = (x - (1 + i))(x - (i - 1))(x - (-i - 1))(x - (-i + 1)) = (x^2 + 2x + 2)(x^2 - 2x + 2) \] \[ \frac{1}{x^4 + 4} = \frac{Ax + B}{x^2 + 2x + 2} + \frac{Cx + D}{x^2 - 2x + 2} \] \[ (Ax + B)(x^2 - 2x + 2) + (Cx + D)(x^2 + 2x + 2) \equiv 1 \] С помощью давно забытой китайской техники решения систем уравнений получаем: \[\begin{cases*} A = \frac{1}{8}\\ B = \frac{1}{4}\\ C = -\frac{1}{8}\\ D = \frac{1}{4}\\ \end{cases*}\] \[ \int \frac{1}{x^4 + 4} = \frac{1}{8}\int \frac{x + 2}{x^2 + 2x + 2} dx + \frac{1}{8}\int \frac{2 - x}{x^2 - 2x + 2} dx \] \begin{minipage}{0.45\textwidth} \setlength{\jot}{16pt} \begin{gather*} \int \frac{x + 2}{x^2 + 2x + 2} dx =\\ \int \frac{x + 2}{(x + 1)^2 + 1} dx =\\ \int \frac{(x + 1) dx}{(x + 1)^2 + 1} + \int \frac{dx}{(x + 1)^2 + 1} =\\ =\begin{bmatrix} \frac{d(x^2 + 2x + 2)}{2} = (x + 1)dx \end{bmatrix} =\\ \int \frac{\frac{1}{2}d( (x + 1)^2 + 1 )}{(x + 1)^2 + 1} + \arctan(x + 1) =\\ = \frac{1}{2}\log | x^2 + 2x + 2 | + \arctan(x + 1) + C_1 \end{gather*} \end{minipage} \begin{minipage}{0.45\textwidth} \begin{tabular}{|p{\textwidth}} \setlength{\jot}{16pt} \begin{gather*} \int \frac{2 - x}{x^2 - 2x + 2} dx =\\ -\int \frac{x - 2}{(x - 1)^2 + 1} dx =\\ -\int \frac{(x - 1) dx}{(x - 1)^2 + 1} + \int \frac{dx}{(x - 1)^2 + 1} =\\ =\begin{bmatrix} \frac{d(x^2 - 2x + 2)}{2} = (x - 1)dx \end{bmatrix} =\\ -\int \frac{\frac{1}{2}d( (x - 1)^2 + 1 )}{(x - 1)^2 + 1} + \arctan(x - 1) =\\ = -\frac{1}{2}\log | x^2 - 2x + 2 | + \arctan(x - 1) + C_2 \end{gather*} \end{tabular} \end{minipage} \begin{gather*} \frac{1}{8}\int \frac{x + 2}{x^2 + 2x + 2} dx + \frac{1}{8}\int \frac{2 - x}{x^2 - 2x + 2} dx =\\ =\frac{1}{16}\ br{ \log | x^2 + 2x + 2 | + 2\arctan(x + 1) - \log | x^2 - 2x + 2 | + 2\arctan(x - 1) } + \bar{C} \end{gather*} \question{(seminar0113) 8.b}{ \[ \int \frac{x^5 - x}{x^8 + 1}dx = \frac{\sqrt{2}}{8} \ br{ \log |x^4 - \sqrt{2} x^2 + 1| - \log |x^4 + \sqrt{2} x^2 + 1| } + \bar{C} \] } \[ \int \frac{x^5 - x}{x^8 + 1}dx = \int \frac{x(x^4 - 1}{x^8 + 1}dx = \begin{bmatrix} u = x^2\\ dx = \frac{du}{2x} \end{bmatrix} = \int \frac{x(u^2 - 1)}{u^4 + 1}\frac{du}{2x} = \frac{1}{2} \int \frac{u^2 - 1}{u^4 + 1} du \] \[ u^4 + 1 = \ br{u^2 + \sqrt{2} u + 1}\ br{u^2 - \sqrt{2} u + 1} \] \[ \frac{u^2 - 1}{u^4 + 1} = \frac{Au + B}{u^2 + \sqrt{2} u + 1} + \frac{Cu + D}{u^2 - \sqrt{2} u + 1} \] \[ (Au + B)(u^2 - \sqrt{2}u + 1) + (Cu + D)(u^2 + \sqrt{2}u + 1) \equiv u^2 - 1 \] Все тем же китайским методом: \[\begin{cases*} A = -\frac{\sqrt{2}}{2}\\ B = -\frac{1}{2}\\ C = \frac{\sqrt{2}}{2}\\ D = -\frac{1}{2}\\ \end{cases*}\] \newcommand{\invsq}{\frac{\sqrt{2}}{2}} \[ \int \frac{u^2 - 1}{u^4 + 1} du = \invsq \int \frac{-u - \invsq}{u^2 + \sqrt{2} u + 1} du + \invsq \int \frac{u - \invsq}{u^2 - \sqrt{2} u + 1} du \] \begin{minipage}{0.45\textwidth} \setlength{\jot}{16pt} \begin{gather*} \int \frac{-u - \invsq}{u^2 + \sqrt{2} u + 1} du =\\ -\int \frac{u + \invsq}{u^2 + \sqrt{2} u + 1} du =\\ -\frac{1}{2} \int \frac{d \ br{ u^2 + \sqrt{2} u + 1 }}{u^2 + \sqrt{2} u + 1} =\\ -\frac{1}{2} \log |u^2 + \sqrt{2} u + 1| + C_1 \end{gather*} \end{minipage} \begin{minipage}{0.45\textwidth} \begin{tabular}{|p{\textwidth}} \setlength{\jot}{16pt} \begin{gather*} \int \frac{u - \invsq}{u^2 - \sqrt{2} u + 1} du =\\ \int \frac{u + \invsq}{u^2 - \sqrt{2} u + 1} du =\\ \frac{1}{2} \int \frac{d \ br{ u^2 - \sqrt{2} u + 1 }}{u^2 - \sqrt{2} u + 1} =\\ \frac{1}{2} \log |u^2 - \sqrt{2} u + 1| + C_2 \end{gather*} \end{tabular} \end{minipage} \[ \frac{1}{2} \int \frac{u^2 - 1}{u^4 + 1} du = \frac{\sqrt{2}}{8} \ br{ \log |u^2 - \sqrt{2} u + 1| - \log |u^2 + \sqrt{2} u + 1| } + C_3 \] Обратно к $x$: \[ \int \frac{x^5 - x}{x^8 + 1}dx = \frac{\sqrt{2}}{8} \ br{ \log |x^4 - \sqrt{2} x^2 + 1| - \log |x^4 + \sqrt{2} x^2 + 1| } + \bar{C} \] \clearpage \question{(seminar0113) 13}{ \[ \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \ br{ -8 \log |x + 2| + 6 \log |x + 3| + \log (x^2 + 1) + 2\arctan x } + \bar{C} \] } \[ \frac{x}{(x^2 + 1)(x + 2)(x + 3)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{x + 2} + \frac{D}{x + 3} \] \[ (Ax + B)(x + 2)(x + 3) + C(x^2 + 1)(x + 3) + D(x^2 + 1)(x + 2) \equiv x \] \[\begin{cases*} A = 0.1\\ B = 0.1\\ C = -0.4\\ D = 0.3\\ \end{cases*}\] \begin{gather*} \int -\frac{2}{5} \frac{dx}{x + 2} = -\frac{2 \log |x + 2|}{5} + C_1\\[16pt] \int \frac{3}{10} \frac{dx}{x + 3} = \frac{3 \log |x + 3|}{10} + C_2\\[16pt] \int \frac{1}{10} \frac{(x + 1) dx}{x^2 + 1} = \frac{1}{10} \ br{ \frac{1}{2}\int \frac{2x \ dx}{x^2 + 1} + \int \frac{dx}{x^2 + 1} } = \frac{1}{10} \ br{ \frac{1}{2} \log (x^2 + 1) + \arctan(x) } + C_3 \end{gather*} \[ \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \ br{ -8 \log |x + 2| + 6 \log |x + 3| + \log (x^2 + 1) + 2\arctan x } + \bar{C} \] \question{(seminar0120) 2.4}{ \[ \int \frac{dx}{x(x^2 + 1)^2} = -\frac{1}{2} \ br{ -\log (x^2 + 1) + \frac{1}{x^2 + 1} + 2\log |x| } + \bar{C} \] } \[ \frac{1}{x(x^2 + 1)^2} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{(x^2 + 1)^2} + \frac{E}{x} \] \[ (Ax + B)(x^2 + 1)x + (Cx + D)x + E(x^2 + 1)^2 \equiv 1 \] \[\begin{cases*} A = -1\\ B = 0\\ C = -1\\ D = 0\\ E = 1 \end{cases*}\] \begin{gather*} \int - \frac{x \ dx}{x^2 + 1} = -\frac{1}{2} \int \frac{2x \ dx}{x^2 + 1} = -\frac{1}{2} \log (x^2 + 1) + C_1\\[12pt] \int - \frac{x \ dx}{(x^2 + 1)^2} = -\frac{1}{2} \int \frac{2x \ dx}{(x^2 + 1)^2} = \begin{bmatrix} \displaystyle \int \frac{dx}{x^s} = \frac{1}{(1 - s)x^{s - 1}} + C \end{bmatrix} = \frac{1}{2(x^2 + 1)} + C_2\\[12pt] \int \frac{dx}{x} = \log |x| + C_3 \end{gather*} \[ \int \frac{dx}{x(x^2 + 1)^2} = -\frac{1}{2} \log (x^2 + 1) + \frac{1}{2(x^2 + 1)} + \log |x| + \bar{C} \] \question{(seminar0120) 11}{ \[ \int \frac{dx}{(x^3 + 1)^2} \] } \[ \frac{1}{(x^3 + 1)^2} = \frac{1}{(x + 1)^2(x^2 - x + 1)^2} = \frac{A}{x + 1} + \frac{B}{(x + 1)^2} + \frac{Cx + D}{x^2 - x + 1} + \frac{Ex + F}{(x^2 - x + 1)^2} \] \[ A(x^2 - x + 1)^2(x + 1) + B(x^2 - x + 1)^2 + (Cx + D)(x + 1)^2(x^2 - x + 1) + (Ex + F)(x + 1)^2 \equiv 1 \] \[\begin{cases*} A = 2/9\\ B = 1/9\\ C = -2/9, \ \ D = 1/3\\ E = -1/3, \ \ F = 1/3\\ \end{cases*}\] \begin{align} \int \frac{2dx}{9(x + 1)} &= \frac{2}{9} \log |x + 1| + C_1 &\\[8pt] \int \frac{dx}{9(x + 1)^2} & = -\frac{1}{9(x + 1)} + C_2 & \begin{bmatrix} \text{Лемма 1} \end{bmatrix}\\[8pt] \int \frac{-2x + 3}{9(x^2 - x + 1)}dx &= -\frac{1}{9} \ br{ \int \frac{(2x - 1) dx}{x^2 - x + 1} - \int \frac{2 dx}{\ br{ x - \frac{1}{2} }^2 + \frac{3}{4}} }\nonumber \\[8pt] &= -\frac{1}{9} \ br{ \log (x^2 - x + 1) - \frac{4}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}} } + C_3\\[8pt] \frac{1}{3} \int \frac{(1 - x)dx}{(x^2 - x + 1)^2} &= -\frac{1}{6} \ br{ \int \frac{(2x - 1)dx}{(x^2 - x + 1)^2} - \int \frac{dx}{\ br{ \ br{ x - \frac{1}{2} }^2 + \frac{3}{4} }^2} }\nonumber \\[8pt] &= -\frac{1}{6} \ br{ -\frac{1}{x^2 - x + 1} + \frac{2}{3} \ br{ \frac{x}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \arctan\frac{2x - 1}{\sqrt{3}} } } + C_4 &\begin{bmatrix} \text{Лемма 1 на левую часть}\\ \text{Лемма 2 на правую часть} \end{bmatrix} \nonumber \\[8pt] &= \frac{1}{9} \ br{ \frac{2x - 1}{x^2 - x + 1} - \frac{2}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}} } + C_4 \end{align} \begin{gather*} \int \frac{1}{(x^3 + 1)^2} = \int \frac{2dx}{9(x + 1)} + \int \frac{dx}{9(x + 1)^2} + \int \frac{-2x + 3}{9(x^2 - x + 1)}dx + \frac{1}{3} \int \frac{(1 - x)dx}{(x^2 - x + 1)^2} =\\[16pt] \frac{1}{9} \ br{ 2\log |x + 1| - \frac{1}{x + 1} - \log(x^2 - x + 1) + \frac{4}{\sqrt{3}}\arctan \frac{2x - 1}{\sqrt{3}} - \frac{2x - 1}{x^2 - x + 1} - \frac{2}{\sqrt{3}}\arctan\frac{2x - 1}{\sqrt{3}} } + C \end{gather*} \end{document}