\documentclass[10pt,a5paper]{article} \usepackage[svgnames, rgb]{xcolor} \input{intro} \lhead{\color{gray} Шарафатдинов Камиль 192} \rhead{\color{gray} \texttt{sol0203}} \title{ДЗ на 10.02} \author{Шарафатдинов Камиль БПМИ-192} \date{билд: \today} % -- Here bet dragons -- \begin{document}\thispagestyle{empty} \maketitle \clearpage \setcounter{page}{1} \newcommand{\deft}{\texttt{\\deft is undefined}} \question{1.b}{ \[ \int \frac{\dif x}{\sqrt[6]{(x - 7)^7(x - 5)^5}} = -3\sqrt[6]{\dfrac{x - 5}{x - 7}} + C \] } \begin{align*} \int \frac{\dif x}{\sqrt[6]{(x - 7)^7(x - 5)^5}} &= -6 \int \frac{t^7 \dif t}{t^7 \br{ \sqrt[6]{x - 5} }^5} &\explain{ \displaystyle t = \sqrt[6]{\frac{1}{x - 7}}\\[8pt] \displaystyle \frac{\dif t}{\dif x} = -\frac{1}{6} \br{ \sqrt[6]{\frac{1}{x - 7}} }^7 = -\frac{1}{6} t^7 }\\[8pt] &= -6 \int \frac{\dif t}{\br{ \sqrt[6]{x - 5} }^5}\\[8pt] &= -6 \int \frac{t^5 \dif t}{\br{ \sqrt[6]{1 + 2t^6} }^5} &\explain{ \dfrac{1}{\sqrt[6]{x - 5}} &= \displaystyle \sqrt[6]{\frac{1}{\frac{1}{t^6} + 2}}\\[8pt] &= \dfrac{t}{\sqrt[6]{1 + 2t^6}} }\\[8pt] &= 3 \int \frac{u^5 \dif u}{u^7} = 3 \int \frac{\dif u}{u^2} &\explain{ \displaystyle u = \dfrac{1}{\sqrt[6]{1 + 2t^6}}\\ \displaystyle \frac{\dif u}{\dif t} = -2t^5 u^7\\ }\\ &= -\frac{3}{u} + C\\ &= -3\sqrt[6]{1 + 2t^6} + C\\ &= -3\sqrt[6]{1 + \dfrac{2}{x - 7}} + C\\ &= -3\sqrt[6]{\dfrac{x - 5}{x - 7}} + C \end{align*} \clearpage \question{7.c}{ \[ \int \frac{\dif x}{1 + \sqrt{1 - 2x - x^2}} \] } Воспользуемся почти подстановкой Эйлера: $ \displaystyle \sqrt{ax^2 + bx + c} = xt - \sqrt{c} $ \begin{align*} \int \frac{\dif x}{1 + \sqrt{1 - 2x - x^2}} &= \int \frac{\dif x}{xt} &\explain{ \displaystyle \sqrt{1 - 2x - x^2} = xt - 1\\[4pt] \displaystyle 1 - 2x - x^2 = x^2t^2 - 2xt + 1\\[4pt] \displaystyle x \br{ t^2 + 1 } = t - 1\\[4pt] \displaystyle x = \dfrac{t - 1}{t^2 + 1}\\[16pt] \displaystyle \dfrac{\dif x}{\dif t} = -2 \dfrac{t^2 - 2t - 1}{(t^2 + 1)^2} }\\ &= \int \frac{-2\dfrac{t^2 - 2t - 1}{(t^2 + 1)^2} \dif t} {2\dfrac{t - 1}{t^2 + 1} t}\\[8pt] &= -\int \frac{(t^2 - 2t - 1)(t^2 + 1) \dif t} {(t - 1)(t^2 + 1)^2 t}\\[8pt] &= -\int \frac{(t^2 - 2t - 1) \dif t} {(t - 1)(t^2 + 1) t}\\[8pt] &= -\int \br{ \frac{2}{t^2 + 1} + \frac{1}{t} - \frac{1}{t - 1} } \dif t\\[8pt] &= -2\arctan t - \log{t} + \log(t - 1) + C\\[8pt] &= -2\arctan \dfrac{\sqrt{1 - 2x - x^2} + 1}{x} + \log \dfrac{t - 1}{t} + C\\[8pt] &= -2\arctan \dfrac{\sqrt{1 - 2x - x^2} + 1}{x} + \log \dfrac{\sqrt{1 - 2x - x^2} + 1 - x}{\sqrt{1 - 2x - x^2} + 1} + C\\[8pt] \end{align*} \clearpage \question{10.b}{ \[ \int \frac{x^8 \dif x}{\sqrt{x^2 + 1}} \] } Лемма (вообще говоря, это задача 9): \begin{gather*} P \in \mathbb{R}_n[x], \qquad Q \in \mathbb{R}_{n - 1}[x], \qquad R = \sqrt{ax^2 + bx + c} \implies \int \frac{P \dif x}{R} = Q R + \lambda \int \frac{\dif x}{R}\\[16pt] \br{ QR + \lambda \int \frac{\dif x}{R}}' = Q'R + QR' + \frac{\lambda}{R} = \frac{Q'R^2}{R} + \frac{Q(2ax + b)}{2R} + \frac{\lambda}{R} = \frac{Q'R^2 + \frac{1}{2} Q(2ax + b) + \lambda}{R} \end{gather*} Надо бы ещё доказать, что такое $Q$ всегда найдется, но нам достаточно того, что в задаче такой $Q$ есть. Тогда по лемме нам надо разложить $x^8$ на слагаемые $Q'(x^2 + 1) + Qx + \lambda$ для некоторого $Q$. Пусть $Q = a_7x^7 + \ldots + a_0, \quad Q' = 7a_7x^6 + \ldots + a_1$ Получится система линейных уравнений, которую я выписывать не буду, а выпишу сразу ответ: \[ Q = \frac{1}{8}x^7 - \frac{7}{48} x^5 + \frac{35}{192} x^3 - \frac{35}{128} x, \quad \lambda = \frac{35}{128} \] Тогда \begin{align*} \int \frac{x^8 \dif x}{\sqrt{x^2 + 1}} &= \br{ \frac{1}{8}x^7 - \frac{7}{48} x^5 + \frac{35}{192} x^3 - \frac{35}{128} x } \sqrt{x^2 + 1} + \frac{25}{128}\int \frac{\dif x}{\sqrt{x^2 + 1}} \\[8pt]&= \br{ \frac{1}{8}x^7 - \frac{7}{48} x^5 + \frac{35}{192} x^3 - \frac{35}{128} x } \sqrt{x^2 + 1} + \frac{25}{128} \log \left|x + \sqrt{x^2 + 1}\right| + C \end{align*} \question{17.b}{ \[ \int \frac{(x + 3) \dif x}{(x^2 + 1)\sqrt{x^2 + x + 1}} \] } \newcommand{\brac}[2]{ \br{ \dfrac{#1}{#2} } } \newcommand{\sbrac}[2]{ \br{ \frac{#1}{#2} } } \renewcommand{\deft}{\br{ \sqrt{x^2 + x + 1} - x }} \begin{gather*} \sqrt{x^2 + x + 1} = x + t\\ x^2 + x + 1 = x^2 + 2xt + t^2 \end{gather*} \begin{align*} x &= \frac{t^2 - 1}{1 - 2t}\\ \dif x &= -\frac{2(t^2 - t + 1)}{(1 - 2t)^2} \dif t\\ x + t &= \frac{t^2 - t + 1}{2t - 1}\\ x + 3 &= \frac{t^2 - 6t + 2}{1 - 2t}\\ x^2 + 1 &= \frac{t^4 + 2t^2 - 4t + 2}{(1 - 2t)^2} \end{align*} \begin{align*} \int \frac{(x + 3) \dif x}{(x^2 + 1)\sqrt{x^2 + x + 1}} &= -2 \int \frac{(x + 3)(t^2 - t + 1)\dif t}{(x^2 + 1)(x + t)(1 - 2t)^2}\\[8pt] &= -2 \int \frac{ \brac{t^2 - 6t + 2}{1 - 2t}(t^2 - t + 1) \dif t }{ \brac{t^4 + 2t^2 - 4t + 2}{(1 - 2t)^2} \brac{t^2 - t + 1}{2t - 1} (1 - 2t)^2 }\\[8pt] &= -2 \int - \frac{t^2 - 6t + 2}{t^4 + 2t^2 - 4t + 2} \dif t\\[8pt] &= 2 \int \frac{t^2 - 6t + 2}{t^4 + 2t^2 - 4t + 2} \dif t\\[8pt] &= \frac{1}{\sqrt{2}} \int \br{ \frac{2 t - 3 \sqrt2 + 4}{-t^2 + \sqrt2 t + \sqrt2 - 2} + \frac{2 t + 3 \sqrt2 + 4}{t^2 + \sqrt2 t + \sqrt2 + 2} } \dif t\\[8pt] \end{align*} \renewcommand{\deft}{t} \def\firstdenum{\br{ \deft - \frac{\sqrt2}{2} }^2 + \sbrac{\sqrt{6 - 4\sqrt2}}{2}^2} \def\firstpoly{ \deft^2 - \sqrt2 \deft - \sqrt2 + 2 } \def\firstsqrt{ \sqrt{6 - 4\sqrt2} } \def\seconddenum{ \br{ \deft + \frac{\sqrt2}{2} }^2 + \sbrac{\sqrt{6 + 4\sqrt2}}{2}^2 } \def\secondpoly{ \deft^2 + \sqrt2 \deft + \sqrt2 + 2 } \def\secondsqrt{ \sqrt{6 + 4\sqrt2} } \begin{align*} \int \frac{2 t - 3 \sqrt2 + 4}{-t^2 + \sqrt2 t + \sqrt2 - 2}\dif t &= -2 \int \frac{t - \frac{3\sqrt2}{2} + 2}{\firstdenum}\dif t\\[8pt] &= -2 \int \frac{t - \frac{\sqrt2}{2}}{\firstdenum} \dif t -2 \int \frac{-\sqrt2 + 2}{\firstdenum} \dif t\\[8pt] &= - \int \frac{\dif \br{ \firstpoly }}{\firstpoly} \dif t +2(\sqrt2 - 2) \frac{2}{\firstsqrt} \arctan \frac{2t - \sqrt2}{\firstsqrt}\\[8pt] &= -\log{ \left|\firstpoly\right| } - 4\arctan \frac{2t - \sqrt2}{\firstsqrt} + C_1 \end{align*} \begin{align*} \int \frac{2 t + 3 \sqrt2 + 4}{\secondpoly}\dif t &= \int \frac{2t + 3\sqrt2 + 4}{\seconddenum} \dif t\\[8pt] &= \int \frac{2t + \sqrt2}{\seconddenum} + \int \frac{2\sqrt2 + 4}{\seconddenum}\\[8pt] &= \log{ \left|\secondpoly\right| } + 2(\sqrt2 + 2)\frac{2}{\secondsqrt} \arctan \frac{2t + \sqrt2}{\secondsqrt} + C_2\\[8pt] &= \log{ \left|\secondpoly\right| } + 4\arctan \frac{2t + \sqrt2}{\secondsqrt} + C_2 \end{align*} \begin{align*} \int \frac{(x + 3) \dif x}{(x^2 + 1)\sqrt{x^2 + x + 1}} &= -\log{ \left|\firstpoly\right| } - 4\arctan \frac{2t - \sqrt2}{\firstsqrt}\\[8pt] & +\log{ \left|\secondpoly\right| } + 4\arctan \frac{2t + \sqrt2}{\secondsqrt} + C\\[8pt] \end{align*} \renewcommand{\deft}{\br{\sqrt{x^2 + x + 1} - x}} \begin{align*} &= -\log{ \left|\firstpoly\right| } - 4\arctan \frac{2\deft - \sqrt2}{\firstsqrt}\\[8pt] & +\log{ \left|\secondpoly\right| } + 4\arctan \frac{2\deft + \sqrt2}{\secondsqrt} + C \end{align*} \clearpage \question{17.c}{ \[ \int \frac{\dif x}{(x^3 - x)\sqrt{x^2 + x + 4}} \] } \begin{gather*} \sqrt{x^2 + x + 4} = x + t\\ x^2 + x + 4 = x^2 + 2xt + t^2 \end{gather*} \begin{align*} x &= \frac{t^2 - 4}{1 - 2t}\\ \dif x &= -\frac{2(t^2 - t + 4)}{(1 - 2t)^2} \dif t\\ x + t &= \frac{t^2 - t + 4}{2t - 1} \end{align*} \medskip \renewcommand{\deft}{\sqrt{x^2 + x + 4} - x} \begin{align*} \int \frac{\dif x}{(x^3 - x)\sqrt{x^2 + x + 4}} &= \int \frac{\dif x}{x(x + 1)(x - 1)\sqrt{x^2 + x + 4}}\\[8pt] &= -\int \frac{2(t^2 - t + 4) \dif t}{(1 - 2t)^2 x(x + 1)(x - 1)(x + t)}\\[8pt] &= -2\int \frac{(t^2 - t + 4) \dif t}{ (1 - 2t)^2 \brac{t^2 - 4}{1 - 2t} \brac{t^2 - 5 + 2t}{1 - 2t} \brac{t^2 - 3 - 2t}{1 - 2t} \brac{t^2 - t + 4}{2t - 1} }\\[8pt] &= 2 \int \frac{(1 - 2t)^2 \dif t}{ (t^2 - 4)(t^2 + 2t - 5)(t^2 - 2t - 3) }\\[8pt] &= 2 \int \frac{(1 - 2t)^2 \dif t}{ (t - 2)(t + 2)(t - \sqrt{6} + 1)(t + \sqrt{6} + 1)(t + 1)(t - 3) }\\[8pt] &= 2\int \br{ -\frac{1}{t^2 - 4} -\frac{1}{8(t + 1)} +\frac{1}{8(t - 3)} -\frac{1}{4\sqrt{6}(t + \sqrt{6} + 1)} +\frac{1}{4\sqrt{6}(t - \sqrt{6} + 1)} } \dif t\\[8pt] &= -\arctan \frac{t}{2} -\frac{1}{4}\log |t + 1| +\frac{1}{4}\log |t - 3| -\frac{1}{2\sqrt{6}}\log |t + \sqrt{6} + 1| +\frac{1}{2\sqrt{6}}\log |t - \sqrt{6} + 1|\\[8pt] &= -\arctan \frac{\deft}{2} -\frac{1}{4}\log |\deft + 1| +\frac{1}{4}\log |\deft - 3|\\[8pt] &-\frac{1}{2\sqrt{6}}\log |\deft + \sqrt{6} + 1| +\frac{1}{2\sqrt{6}}\log |\deft - \sqrt{6} + 1|\\[8pt] \end{align*} \end{document}