diff options
author | syn <isaqtm@gmail.com> | 2019-12-27 10:33:43 +0300 |
---|---|---|
committer | syn <isaqtm@gmail.com> | 2019-12-27 10:33:43 +0300 |
commit | 325d44c6428af3e70d0b4c5d78a1e1d117895f52 (patch) | |
tree | 3561ee255f5be3b2ad055c70fe7653c562f6c6a2 /sol1202.tex | |
download | some-texs-master.tar.gz |
Diffstat (limited to 'sol1202.tex')
-rw-r--r-- | sol1202.tex | 239 |
1 files changed, 239 insertions, 0 deletions
diff --git a/sol1202.tex b/sol1202.tex new file mode 100644 index 0000000..59f5a17 --- /dev/null +++ b/sol1202.tex @@ -0,0 +1,239 @@ +\documentclass[11pt]{article} +%\usepackage[T2A]{fontenc} +%\usepackage[utf8]{inputenc} +%\usepackage[russian]{babel} +\usepackage[x11names, svgnames, rgb]{xcolor} +\usepackage{tikz} +\usetikzlibrary{arrows,shapes} + +\usepackage{scrextend} + + +\input{intro} + +\lhead{\color{gray} Шарафатдинов Камиль 192} +\rhead{\color{gray} ДЗ к 07.12 (\texttt{sol1202})} +\title{ДЗ на 07.12} +\author{Шарафатдинов Камиль БПМИ-192} +\date{билд: \today} + +% -- Here bet dragons -- +\begin{document} + +\maketitle + +\question{17}{ + \[ + \lim_{x \to \infty} f(x) = 0, \qquad + \lim_{x \to \infty} g(x) = 0, \qquad + \] + Доказать, что + \[ + \begin{cases} + f(x), g(x) \text{ -- дифф. в окрестности } \infty \quad (1)\\ + \exists \lim_{x \to +\infty} f(x) = 0\\ + \exists \lim_{x \to +\infty} g(x) = 0\\ + g'(x) \neq 0\\ + \exists \frac{f'(x)}{g'(x)} + \end{cases} + \implies \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} + \] +} + + \[ + (1) \Rightarrow f\braced{\frac{1}{t}}, g\braced{\frac{1}{t}} \text{ -- дифф. в окрестности } 0 + \] + + \[ + \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = + \lim_{y \to 0} \frac{(f(\frac{1}{t}))'}{(g(\frac{1}{t}))'} = + \lim_{y \to 0} \frac{-t^2}{-t^2}\frac{f'(\frac{1}{t})}{g'(\frac{1}{t})} \overset{\text{по правилу Лопиталя}}{=} + \lim_{y \to 0} \frac{f(\frac{1}{t})}{g(\frac{1}{t})} = + \lim_{x \to \infty} \frac{f(x)}{g(x)} \qed + \] + + +\question{21}{ + \begin{enumerate} + \item $ + x^{2/3} + y^{2/3} = a^{2/3} + $ + \item $\displaystyle + \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + $ + \end{enumerate} +} + 1. + \begin{gather*} + x^{2/3} + y^{2/3} = a^{2/3}\\ + \frac{2}{3}x^{-1/3} + y' \frac{2}{3} y^{-1/3} = 0\\ + x^{-1/3} + y' y^{-1/3} = 0\\ + y' = -\frac{y^{1/3}}{x^{1/3}} = -\sqrt[3]{\frac{y}{x}} + \end{gather*} + + 2. + \begin{gather*} + \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\\ + \frac{2x}{a^2} + \frac{2yy'}{b^2} = 0\\ + \frac{yy'}{b^2} = -\frac{x}{a^2}\\ + y' = -\frac{x}{y}\cdot\frac{b^2}{a^2} + \end{gather*} + +\question{21}{ + \[ + r = ae^{m\varphi} + \] +} + + \begin{gather*} + r = ae^{m\varphi}\\ + \sqrt{x^2 + y^2} = ae^{m \arctan{\frac{y}{x}}}\\ + \frac{2x + 2yy'}{2\sqrt{x^2 + y^2}} = + ae^{m \arctan{\frac{y}{x}}} m (\arctan{\frac{y}{x}})' = + ae^{m \arctan{\frac{y}{x}}} m \frac{1}{1 + \braced{\frac{y}{x}}^2} \frac{y'x - y}{x^2}\\ + \frac{x + yy'}{y'x - y} = + mae^{m \varphi}\frac{1}{\frac{x^2 + y^2}{x^2}} \frac{1}{x^2} \sqrt{x^2 + y^2} = + \frac{mae^{m \varphi}}{r} = \mu\\ + \frac{x + yy'}{y'x - y} = \mu\\ + x + yy' = \mu (y'x - y)\\ + x + \mu y = \mu y'x - yy'\\ + y' = \frac{x + \mu y}{\mu x - y} = + \frac{x + \frac{mae^{m \varphi}}{r}y}{\frac{mae^{m \varphi}}{r}x - y} = + \frac{xr + ymae^{m \varphi}}{xmae^{m \varphi} - yr} + \end{gather*} + +\question{23}{ + \[ + y_1 = ax^2, \qquad\qquad y_2 = \ln x + \] +} + + Чтобы кривые касались, достаточно, чтобы их функции и производные были равны в некоторой точке: + \[ + \begin{cases} + y_1 = y_2\\ + y_1' = y_2'\\ + \end{cases} + \] + \[ + 2ax = \frac{1}{x} \implies x = \sqrt\frac{1}{2a} + \] + \[ + ax^2 = \ln x \overset{\text{подставим $x$}}{\implies} + \frac{1}{2} = \ln {\sqrt\frac{1}{2a}} \implies + \frac{1}{2a} = e \implies a = \frac{1}{2e} + \] + +\question{24}{ + \[ + x = \frac{2t + t^2}{1 + t^3}, \qquad y = \frac{2t - t^2}{1 + t^3} + \] +} + + $ + \exists \varphi^{-1}(x): xt^3 - t^2 - 2t + x = 0 + $ и функции дифференцируемы в окрестностях нужных точек, поэтому $f'(x_0) = \frac{x'(t_0)}{y'(t_0)}$ + + \[ + f'(x) = \frac{\braced{\frac{2t - t^2}{1 + t^3}}'}{\braced{\frac{2t + t^2}{1 + t^3}}'} = + \frac{(2 - 2t)(1 + t^3) - 3t^3(2t - t^2)} + {(2 + 2t)(1 + t^3) - 3t^3(2t + t^2)} = + \frac{2 - 2t + 2t^3 - 2t^4 - 6t^4 + 3t^5} + {2 + 2t + 2t^3 + 2t^4 - 6t^4 - 3t^5} + \] + + \begin{enumerate}[(a)] + \item $t = 0: $ $f'(x) = 1$\\ + \[ + 1 \cdot(y - 0) + (x - 0) = 0 \Rightarrow y + x = 0 + \] + \item $t = 1: $ $f'(x) = 3$\\ + \[ + 3 \cdot(y - 1.5) + (x - 1.5) = 0 \Rightarrow 3y + x - 3 = 0 + \] + \item $t = +\infty: $ $f'(x) = -1$\\ + \[ + -1 \cdot(y - 0) + (x - 0) = 0 \Rightarrow -y + x = 0 + \] + \end{enumerate} + +\question{25.a}{ + \[ + \lim_{x \to 0} \frac{\ln \cos ax}{\ln \cos bx} = \frac{a^2}{b^2} + \] +} + \begin{align*} + &\lim_{x \to 0} \frac{\ln \cos ax}{\ln \cos bx} \overset{\text{Лопиталь}}= + \lim_{x \to 0} \frac{-a \sin ax}{\cos ax} \frac{\cos bx}{-b \sin bx} = + \lim_{x \to 0} \frac{\sin ax}{\sin bx} \cdot \frac{a\cos bx}{b\cos ax} =\\\\ + &\lim_{x \to 0} \frac{a(bx) \sin ax}{(ax)b \sin bx} \cdot \frac{a\cos bx}{b\cos ax} \overset{\text{1й зам. предел}}= + \lim_{x \to 0} \frac{a}{b} \cdot \frac{a\cos bx}{b\cos ax} = \frac{a^2}{b^2} + \end{align*} + +\question{25.b}{ + \[ + \lim_{x \to a} \frac{a^x - x^a}{x - a} = a^a (\ln a - 1) + \] +} + + \[ + \lim_{x \to a} \frac{a^x - x^a}{x - a} = + \lim_{x \to a} \frac{e^{x\ln a} - x^a}{x - a} \overset{\text{Лопиталь}}= + \lim_{x \to a} \frac{\ln a \cdot a^x - ax^{a - 1}}{1} \overset{\text{ф-я непрерывна}}= + \frac{\ln a \cdot a^a - a \cdot a^{a - 1}}{1} = a^a (\ln a - 1) + \] + +\question{25.c}{ + \[ + \lim_{x \to 1} \frac{1}{\ln x} - \frac{1}{x - 1} = \frac{1}{2} + \] +} + + \begin{align*} + \lim_{x \to 1} \frac{1}{\ln x} - \frac{1}{x - 1} = + \lim_{x \to 1} \frac{x - 1 - \ln x}{(x - 1) \ln x} \overset{\text{Лопиталь}}= + \lim_{x \to 1} \frac{1 - \frac{1}{x}}{\ln x + \frac{x - 1}{x}} \overset{\cdot \frac{x}{x}}= + \lim_{x \to 1} \frac{x - 1}{x \ln x + x - 1} \overset{\text{Лопиталь}}=\\ + =\lim_{x \to 1} \frac{1}{1 + \ln x + 1} = \frac{1}{2} + \end{align*} + + +\question{25.c}{ + \[ + \frac{(1 + x)^\frac{1}{x} - e}{x} = -\frac{e}{2} + \] +} + + \begin{align*} + &\lim_{x \to 0}\frac{(1 + x)^\frac{1}{x} - e}{x} = + \lim_{x \to 0}\frac{e^\frac{\ln (x + 1)}{x} - e}{x} \overset{\text{Лопиталь}}=\\ + = &\lim_{x \to 0}\frac{e^\frac{\ln (x + 1)}{x} \cdot \frac{\frac{x}{x + 1} - \ln(x + 1)}{x^2}}{1} = + \lim_{x \to 0}e^\frac{\ln (x + 1)}{x} \cdot \frac{\frac{x}{x + 1} - \ln(x + 1)}{x^2} \overset{\text{св-ва пределов}}=\\ + = &\lim_{x \to 0}e^\frac{\ln (x + 1)}{x} \cdot + \lim_{x \to 0} \frac{\frac{x}{x + 1} - \ln(x + 1)}{x^2} = + \lim_{x \to 0}(x + 1)^\frac{1}{x} \cdot + \lim_{x \to 0} \frac{x - (x + 1)\ln(x + 1)}{(x + 1)x^2} =\\ + = &e \lim_{x \to 0} \frac{x - (x + 1)\ln(x + 1)}{(x + 1)x^2} \overset{\text{св-ва пределов}}= + e \lim_{x \to 0} \frac{1}{x + 1} \lim_{x \to 0} \frac{x - (x + 1)\ln(x + 1)}{x^2} =\\ + = &e \lim_{x \to 0} \frac{x - x\ln(x + 1) - \ln(x + 1)}{x^2} \overset{\text{св-ва пределов}}= + e \left( \lim_{x \to 0}\frac{x - \ln(x + 1)}{x^2} - \lim_{x \to 0}\frac{x\ln(x + 1)}{x^2} \right) \overset{\text{два Лопиталя}}=\\ + = &e \left( \lim_{x \to 0} \frac{1 - \frac{1}{x + 1}}{2x} - \lim_{x \to 0} \frac{\frac{1}{x + 1}}{1} \right) = + e \left( \lim_{x \to 0} \frac{x + 1 - 1}{2x(x + 1)} - 1 \right) = + e \left( \lim_{x \to 0} \frac{1}{2(x + 1)} - 1 \right) = + e \left( \frac{1}{2} - 1 \right) = -\frac{e}{2} + \end{align*} + +\question{25.e}{ + \[ + \lim_{x \to 1} \frac{1}{\ln x} - \frac{1}{x - 1} = \frac{1}{2} + \] +} + \begin{align*} + &\lim_{x \to 1} \frac{1}{\ln x} - \frac{1}{x - 1}= + \lim_{x \to 1} \frac{x - 1 - \ln x}{(x - 1)\ln x} \overset{\text{Лопиталь}}=\\ + = &\lim_{x \to 1} \frac{1 - \frac{1}{x}}{\ln x + \frac{x - 1}{x}} = + \lim_{x \to 1} \frac{x - 1}{x\ln x + x - 1} \overset{\text{Лопиталь}}=\\ + = &\lim_{x \to 1} \frac{1}{1 + \ln x + 1} = \frac{1}{2} + \end{align*} + +\end{document} |