summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorsyn <isaqtm@gmail.com>2020-02-04 10:43:52 +0300
committersyn <isaqtm@gmail.com>2020-02-04 10:43:52 +0300
commit2b76ef061aae6b3cd492591e445c9e6452bd357c (patch)
tree7bce01876e6a615ce01bc66d104786c4ba96c784
parent9d3ced22f7363af083aa82a7129ed1203957737c (diff)
downloadtex2-2b76ef061aae6b3cd492591e445c9e6452bd357c.tar.gz
Add some hw's
-rw-r--r--dm-15.tex146
-rw-r--r--sol0113.tex22
-rw-r--r--sol0127.tex268
3 files changed, 436 insertions, 0 deletions
diff --git a/dm-15.tex b/dm-15.tex
new file mode 100644
index 0000000..db0de91
--- /dev/null
+++ b/dm-15.tex
@@ -0,0 +1,146 @@
+\documentclass[11pt]{article}
+\usepackage[x11names, svgnames, rgb]{xcolor}
+%\usepackage{tikz}
+%\usetikzlibrary{arrows,shapes}
+
+\usepackage{scrextend}
+
+\input{intro}
+
+\lhead{\color{gray} Шарафатдинов Камиль 192}
+\rhead{\color{gray} дм-15 (\texttt{cw15\_plus})}
+\title{Дискретная математика 15}
+\author{Шарафатдинов Камиль БПМИ192}
+\date{билд: \today}
+
+% -- Here bet dragons --
+\begin{document}
+
+\maketitle
+
+\twocolumn
+
+\dmquestion{1}
+ \[
+ 99^{1000} = (-1)^{1000} = 1 \pmod{100}
+ \]
+
+\dmquestion{2}
+ \begin{align*}
+ x + 10y &=\\
+ &= x + 10y - 13x - 13y\\
+ &= -12x - 3y\\
+ &= -3(4x + y) \pmod{13}
+ \end{align*}
+
+ Так как $(3; 13) = 1$, то $x + 10y = 0 \pmod{13}$ тогда и только тогда,
+ когда $4x + y = 0 \pmod{13}$
+
+\dmquestion{3}
+ \begin{align*}
+ 53x &= 1 &\pmod{42}\\
+ 11x &= 1 + 42 \cdot 6 &\pmod{42}\\
+ 11x &= 253 &\pmod{42}\\
+ x &= 23 &\pmod{42}
+ \end{align*}
+
+\dmquestion{4}
+ \begin{align*}
+ 74x + 47y = 2900\\
+ 27x = 2900 \pmod{47}\\
+ 27x = 33 \pmod{47}\\
+ 9x = 11 \pmod{47}\\
+ 9x = -36 \pmod{47}\\
+ x = -4 = 43 \pmod{47}\\\\
+ 74 \cdot 43 + 47y = 2900\\
+ 47y = -282\\
+ y = -6
+ \end{align*}
+
+ Все решения имеют вид
+ \[
+ (x_0 + 47k; y_0 - 74k), \qquad k \in \mathbb{Z}
+ \]
+
+ Поэтому неотрицательных решений у этого уравнения нет
+
+\dmquestion{5}
+ \[
+ \frac{n^2 - n + 1}{n^2 + 1}
+ \]
+
+ Предположим противное: пусть такая дробь сократима.
+
+ Пусть существует $p > 1$ такое, что
+ \[
+ p \mid (n^2 + 1), p \mid (n^2 - n + 1)
+ \]
+
+ Значит,
+ \[
+ n = (n^2 + 1) - (n^2 - n + 1) \text{ тоже делится на $p$.}
+ \]
+
+ Значит, $p \mid n^2$.
+
+ Но $n^2 + 1 = 1 \pmod{p}$. Противоречие.
+
+\dmquestion{6}
+
+ \textbf{Лемма}
+ \[
+ 3^m - 1 = 3^{m - n} - 1 \pmod{3^n - 1}
+ \]
+
+ Доказательство:
+ \begin{align*}
+ 3^{m - n}(3^n - 1) = 0 \pmod{3^n - 1}\\
+ 3^m - 3^{m - n} = 0 \pmod{3^n - 1}\\
+ 3^m = 3^{m - n} \pmod{3^n - 1}\\
+ 3^m - 1 = 3^{m - n} - 1 \pmod{3^n - 1}\\
+ \qed
+ \end{align*}
+
+ По алгоритму Евклида и лемме (просто вычитаем одну степень из другой):
+ \begin{align*}
+ (3^{133} - 1, 3^{101} - 1) =\\
+ (3^{101} - 1, 3^{32} - 1) =\\
+ (3^{32} - 1, 3^5 - 1) =\\
+ (3^2 - 1, 3^5 - 1) =\\
+ (3^1 - 1, 3^2 - 1) =\\
+ (2, 8) = 2
+ \end{align*}
+
+\dmquestion{7}
+
+ \[
+ \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{p - 1} =
+ \frac{\frac{(p - 1)!}{1} + \frac{(p - 1)!}{2} + \ldots + \frac{(p - 1)!}{p - 1}}{(p - 1)!}
+ \]
+
+ Сгруппируем слагаемые в числителе так, чтобы их знаменатели в сумме равнялись $p$.
+ Так можно сделать, потому что их четное число.
+ \[
+ \frac{
+ \br{ \frac{(p - 1)!}{1} + \frac{(p - 1)!}{p - 1} } +
+ \br{ \frac{(p - 1)!}{2} + \frac{(p - 1)!}{p - 2} } + \ldots
+ }{(p - 1)!}
+ \]
+
+ Заметим, что каждая скобка тогда делится на $p$:
+ \begin{gather*}
+ \frac{(p - 1)!}{k} + \frac{(p - 1)!}{p - k} =\\[8pt]
+ (p - 1)! \br{ \frac{(p - k) + k}{k(p - k)}} =\\[8pt]
+ p\frac{(p - 1)!}{k(p - k)}
+ \end{gather*}
+
+ Так как это сумма факториалов, деленных на одно число, меньшее аргумента факториала, то это все еще целое число, а так как $p$ - простое и точно не делится на $k$ и $p - k$, то его можно вынести за скобку.
+
+ Тогда наша сумма представляется в виде
+
+ \[
+ \frac{p \cdot Q}{(p - 1)!}
+ \]
+
+ Так как в факториале нет множителей, делящих $p$, то $p$ останется в числителе, значит, числитель делится на $p$ \qed
+\end{document}
diff --git a/sol0113.tex b/sol0113.tex
new file mode 100644
index 0000000..06ac8d6
--- /dev/null
+++ b/sol0113.tex
@@ -0,0 +1,22 @@
+\documentclass[10pt,a5paper]{article}
+\usepackage[svgnames, rgb]{xcolor}
+
+\input{intro}
+
+\lhead{\color{gray} Шарафатдинов Камиль 192}
+\rhead{\color{gray} ДЗ к 27.01 (\texttt{sol0113 + sol0120})}
+\title{ДЗ на 27.01}
+\author{Шарафатдинов Камиль БПМИ-192}
+\date{билд: \today}
+
+
+% -- Here bet dragons --
+\begin{document}\thispagestyle{empty}
+
+\maketitle
+\clearpage
+\setcounter{page}{1}
+\[
+ \abs{\frac{1}{2}}
+\]
+\end{document}
diff --git a/sol0127.tex b/sol0127.tex
new file mode 100644
index 0000000..1098687
--- /dev/null
+++ b/sol0127.tex
@@ -0,0 +1,268 @@
+\documentclass[10pt,a5paper]{article}
+\usepackage[svgnames, rgb]{xcolor}
+
+\input{intro}
+
+\lhead{\color{gray} Шарафатдинов Камиль 192}
+\rhead{\color{gray} \texttt{sol0127}}
+\title{ДЗ на 03.02}
+\author{Шарафатдинов Камиль БПМИ-192}
+\date{билд: \today}
+
+
+% -- Here bet dragons --
+\begin{document}\thispagestyle{empty}
+
+\maketitle
+\clearpage
+\setcounter{page}{1}
+
+%\question{8.a}{
+% \[
+% \int \frac{2\sin^3 x + \cos^2 x \sin 2x}{\sin^4 x + 3 \cos^4 x} \dif x = \todo + C
+% \]
+%}
+
+
+
+\question{8.c}{
+ \[
+ \int \frac{\dif x}{\cosh^3 x + 3\cosh x} = \frac{
+ 2\arctan \sinh x - \arctan \frac{\sinh x}{2}
+ }{6} + C
+ \]
+}
+ \begin{align*}
+ \int \frac{\dif x}{\cosh^3 x + 3\cosh x}
+ &= \int \frac{\frac{\dif \sinh x}{\cosh x}}{\cosh^3 x + 3\cosh x}
+ &\explain{
+ \dif \sinh x = \cosh x \dif x
+ } \\[8pt]
+ &= \int \frac{\dif \sinh x}{\cosh^4 x + 3\cosh^2 x} \\[8pt]
+ &= \int \frac{\dif \sinh x}{\br{ 1 + \sinh^2 x }^2 + 3\br {1 + \sinh^2 x}}
+ &\explain{
+ \cosh^2 x - \sinh^2 x = 1
+ } \\[8pt]
+ &= \int \frac{\dif u}{\br{ 1 + u^2 }^2 + 3\br {1 + u^2}}
+ &\explain{
+ u = \sinh x
+ } \\[8pt]
+ &= \int \frac{\dif u}{4 + 5u^2 + u^4} \\[8pt]
+ &= \int \frac{\dif u}{\br{ u^2 + 1 } \br{ u^2 + 4 }} \\[8pt]
+ &= \int \frac{\dif u}{3} \br{
+ \frac{1}{ u^2 + 1 } - \frac{1}{ u^2 + 4 }
+ } \\[8pt]
+ &= \frac{1}{3} \br{
+ \int \frac{du}{u^2 + 1} - \int \frac{du}{u^2 + 4}
+ } \\[8pt]
+ &= \frac{1}{3} \br{
+ \arctan u - \frac{1}{2}\arctan \frac{u}{2}
+ } + C
+ &\explain{
+ u = \sinh x
+ }\\[8pt]
+ &= \frac{1}{6} \br{
+ 2\arctan \sinh x - \arctan \frac{\sinh x}{2}
+ } + C
+ \end{align*}
+
+\clearpage
+\question{8.e}{
+ \[
+ \int \frac{\dif x}{\sin^4 x + \cos^4 x} = \frac{\sqrt{2}}{2} \br{
+ \arctan \br{ \sqrt{2} \tan x + 1 } + \arctan \br{ \sqrt{2} \tan x - 1 }
+ } + C
+ \]
+}
+
+ \[
+ \sin^4 x + \cos^4 x =
+ \br{ 1 - \cos^2 x }^2 + \cos^4 x =
+ 1 - 2\cos^2 x + 2\cos^4 x
+ \]
+ \[
+ \dif x = \cos^2 x \dif\ (\tan x)
+ \]
+ \[
+ 1 + \tan^2 x = \frac{1}{\cos^2 x}
+ \]
+
+ \begin{align*}
+ \int \frac{\dif x}{\sin^4 x + \cos^4 x}
+ &= \int \frac{\cos^2 x \dif\ (\tan x)}{1 - 2\cos^2 x + 2\cos^4 x} \\[8pt]
+ &= \int \frac{\dif\ (\tan x)}{\frac{1}{\cos^2 x} - 2 + 2\cos^2 x} \\[8pt]
+ &= \int \frac{\dif\ (\tan x)}{1 + \tan^2 x - 2 + \frac{2}{1 + \tan^2 x}} \\[8pt]
+ &= \int \frac{\dif u}{-1 + u^2 + \frac{2}{1 + u^2}} & [u = \tan x]\\[8pt]
+ &= \int \frac{(1 + u^2) \dif u}{u^4 + 1} \\[8pt]
+ \end{align*}
+
+ По прошлой домашке мы знаем, что
+ \[
+ x^4 + 1 = (x^2 - \sqrt{2} x + 1)(x^2 + \sqrt{2} x + 1)
+ \]
+
+ Разложим на слагаемые:
+ \[
+ \frac{x^2 + 1}{x^4 + 1} =
+ \frac{1}{2} \br{ \frac{1}{x^2 + \sqrt{2} x + 1} + \frac{1}{x^2 - \sqrt{2} + 1} }
+ \]
+
+ \begin{align*}
+ \int \frac{1}{u^2 + \sqrt{2} u + 1}\dif u
+ &= \int \frac{1}{\br{ u + \frac{\sqrt{2}}{2} }^2 + \frac{1}{2}}\dif u \\[8pt]
+ &= \sqrt{2} \arctan \br{ \sqrt{2} u + 1 } + C_1 \\[16pt]
+ \int \frac{1}{u^2 - \sqrt{2} u + 1}\dif u
+ &= \int \frac{1}{\br{ u - \frac{\sqrt{2}}{2} }^2 + \frac{1}{2}}\dif u \\[8pt]
+ &= \sqrt{2} \arctan \br{ \sqrt{2} u - 1 } + C_2 \\[8pt]
+ \end{align*}
+
+ \begin{gather*}
+ \int \frac{\dif x}{\sin^4 x + \cos^4 x} =
+ \int \frac{(\tan^2 x + 1) \dif\ \tan x}{\tan^4 x + 1} =\\[8pt] =
+ \frac{\sqrt{2}}{2} \br{
+ \arctan \br{ \sqrt{2} \tan x + 1 } + \arctan \br{ \sqrt{2} \tan x - 1 }
+ } + C
+ \end{gather*}
+
+\question{8.g}{
+ \[
+ \int \frac{\dif x}{a \sin x + b \cos x + c}, \qquad c > \sqrt{a^2 + b^2}
+ \]
+}
+
+ Найдем такой интеграл в предположении $a > 1$:
+
+ \begin{align*}
+ \int \frac{\dif x}{\sin x + a}
+ &= \int \frac{\frac{2 \dif u}{1 + u^2}}{\frac{2u}{1 + u^2} + a}
+ &\explain{
+ \displaystyle u = \tan \frac{x}{2}\\[8pt]
+ \displaystyle \dif x = \frac{2 \dif u}{1 + u^2}\\[8pt]
+ \displaystyle \sin x = \frac{2u}{1 + u^2}
+ } \\[8pt]
+ &= \int \frac{2\dif u}{2u + a + au^2} \\[8pt]
+ &= \int \frac{2\dif u}
+ {\br{ \sqrt{a} u + \frac{1}{\sqrt{a}} }^2 + 1 - \frac{1}{a}} \\[8pt]
+ &= \int \frac{2\dif u}
+ {\br{ \sqrt{a} u + \frac{1}{\sqrt{a}} }^2 + \frac{a^2 - 1}{a}} \\[8pt]
+ &= \frac{2}{\sqrt{a}}\int \frac{\dif v}{v^2 + \frac{a^2 - 1}{a}}
+ &\explain{
+ v = \sqrt{a} u + \frac{1}{\sqrt{a}}\\
+ \dif v = \sqrt{a} \dif u
+ } \\[8pt]
+ &= \frac{2\sqrt{a}}{\sqrt{a}\sqrt{a^2 - 1}}
+ \arctan \br{ \frac{\sqrt{a} v}{\sqrt{a^2 - 1}} } + C \\[8pt]
+ &= \frac{2}{\sqrt{a^2 - 1}}
+ \arctan \br{ \frac{\sqrt{a} v}{\sqrt{a^2 - 1}} } + C \\[8pt]
+ &= \frac{2}{\sqrt{a^2 - 1}}
+ \arctan \br{ \frac{au + 1}{\sqrt{a^2 - 1}} } + C
+ &\explain{
+ v = \sqrt{a} u + \frac{1}{\sqrt{a}}
+ } \\[8pt]
+ &= \frac{2}{\sqrt{a^2 - 1}}
+ \arctan \br{ \frac{a \tan \frac{x}{2} + 1}{\sqrt{a^2 - 1}} } + C
+ \end{align*}
+
+ Теперь, непосредственно задание
+
+ \begin{align*}
+ \int \frac{\dif x}{a \sin x + b \cos x + c}
+ &= \int \frac{\dif x}{r \br{ \frac{a}{r} \sin x + \frac{b}{r} \cos x} + c }
+ &\explain{
+ \displaystyle r = \sqrt{a^2 + b^2}
+ } \\[8pt]
+ &= \frac{1}{r} \int \frac{\dif x}{\cos \phi \sin x + \sin \phi \cos x + c/r}
+ &\explain{
+ \displaystyle \phi = \arccos \frac{a}{r} = \arcsin \frac{b}{r}
+ } \\[8pt]
+ &= \frac{1}{r} \int \frac{\dif x}{\sin \br{ \phi + x } + c/r} \\[8pt]
+ &= \frac{1}{r} \int \frac{\dif u}{\sin \br{ u } + c/r}
+ &\explain{
+ u = \phi + x\\
+ du = dx
+ } \\[8pt]
+ &= \frac{2}{r\sqrt{\dfrac{c^2}{r^2} - 1}}
+ \arctan \br{
+ \frac
+ {\displaystyle \frac{c}{r} \tan \frac{u}{2} + 1}
+ {\displaystyle \sqrt{\frac{c^2}{r^2} - 1}}
+ } + C
+ &\explain{\text{По доказанному}}\\[8pt]
+ &= \frac{2}{\sqrt{c^2 - r^2}}
+ \arctan \br{
+ \frac
+ {\displaystyle \frac{c}{r} \tan \frac{\arccos \dfrac{a}{r}}{2} + 1}
+ {\displaystyle \sqrt{\frac{c^2}{r^2} - 1}}
+ } + C \\[8pt]
+ &= \frac{2}{\sqrt{c^2 - r^2}}
+ \arctan \br{
+ \frac
+ {\displaystyle c \tan \frac{\arccos \dfrac{a}{r}}{2} + r}
+ {\displaystyle \sqrt{c^2 - r^2}}
+ } + C \\[8pt]
+ &= \frac{2}{\sqrt{c^2 - a^2 - b^2}}
+ \arctan \br{
+ \frac
+ {\displaystyle c \tan \frac{\arccos \dfrac{a}{\sqrt{a^2 + b^2}}}{2} + \sqrt{a^2 + b^2}}
+ {\displaystyle \sqrt{c^2 - a^2 - b^2}}
+ } + C \\[8pt]
+ \end{align*}
+
+\clearpage
+
+\question{10}{
+ \[
+ \int \frac{\dif x}{(a\sin x + b\cos x)^n}
+ \]
+}
+
+ Найдем рекуррентную формулу для следующего интеграла:
+ \begin{align*}
+ \int \frac{\dif x}{\sin^n x}
+ &= -\int \frac{\dif \cos x}{\sin^{n + 1} x}\\[6pt]
+ &= -\frac{\cos x}{\sin^{n + 1} x} -
+ \int \br{ \frac{1}{\sin^{n + 1} x} }' \cos x \dif x
+ &\explain{
+ \displaystyle \int Fg \dif x = FG - \int fG \dif x\\
+ \displaystyle F = \frac{1}{\sin^{n + 1} x}\\[10pt]
+ \displaystyle g = \frac{\dif \cos x}{\dif x}\\
+ \displaystyle G = \cos x
+ } \\[8pt]
+ &= -\frac{\cos x}{\sin^{n + 1} x} -
+ (n + 1) \int \frac{\cos^2 x \dif x}{\sin^{n + 2} x} \\[8pt]
+ &= -\frac{\cos x}{\sin^{n + 1} x} -
+ (n + 1) \int \frac{(1 - \sin^2 x) \dif x}{\sin^{n + 2} x} \\[8pt]
+ &= -\frac{\cos x}{\sin^{n + 1} x} -
+ (n + 1) \int \frac{\dif x}{\sin^{n + 2} x} +
+ (n + 1) \int \frac{\dif x}{\sin^n x}
+ \end{align*}
+
+ Пусть $\displaystyle J_n = \int \frac{\dif x}{\sin^n x}$.
+
+ Переобозначим $n = n + 2$ в полученном интеграле, чтобы формула получилась красивой
+ \begin{align*}
+ J_{n - 2} &= -\frac{\cos x}{\sin^{n - 1} x} - (n - 1) J_n + (n - 1) J_{n - 2}\\[8pt]
+ (n - 1)J_n &= -\frac{\cos x}{\sin^{n - 1} x} + (n - 2)J_{n - 2}\\[8pt]
+ J_n &= \frac{\cos x}{(1 - n) \sin^{n - 1} x} + \frac{n - 2}{n - 1}J_{n - 2}
+ \end{align*}
+
+ Тогда:
+ \begin{align*}
+ I_n = \int \frac{\dif x}{(a\sin x + b\cos x)^n}
+ &= \frac{1}{r} \int \frac{\dif x}{(\frac{a}{r}\sin x + \frac{b}{r}\cos x)^n}
+ &\explain{
+ \displaystyle r = \sqrt{a^2 + b^2}
+ } \\[8pt]
+ &= \frac{1}{r} \int \frac{\dif x}{(\cos \phi \sin x + \sin \phi \cos x)^n}
+ &\explain{
+ \displaystyle \phi = \arccos \frac{a}{r} = \arcsin \frac{b}{r}
+ } \\[8pt]
+ &= \frac{1}{r} \int \frac{\dif x}{(\sin (\phi + x))^n} \\[8pt]
+ &= \frac{\cos (\phi + x)}{r(1 - n) \sin^{n - 1} (\phi + x)} +
+ \frac{n - 2}{n - 1} I_{n - 2} \\[8pt]
+ &= \frac{\cos (\arccos{\frac{a}{\sqrt{a^2 + b^2}}} + x)}
+ {\sqrt{a^2 + b^2}(1 - n) \sin^{n - 1} (\arccos{\frac{a}{\sqrt{a^2 + b^2}}} + x)} +
+ \frac{n - 2}{n - 1} I_{n - 2}
+ \end{align*}
+
+\end{document}