diff options
author | syn <isaqtm@gmail.com> | 2020-02-04 10:43:02 +0300 |
---|---|---|
committer | syn <isaqtm@gmail.com> | 2020-02-04 10:43:02 +0300 |
commit | 8af2046bf8bbcb512b6040ca15079ca9618d37a4 (patch) | |
tree | 96881b5f81db0b69ddfbd582b48fe92750703623 | |
parent | 867708801b4d27ea69c273075f23ebeb13730a5f (diff) | |
download | tex2-8af2046bf8bbcb512b6040ca15079ca9618d37a4.tar.gz |
[breaks things] remove some packages
-rw-r--r-- | intro.tex | 15 | ||||
-rw-r--r-- | sol0120.tex | 54 |
2 files changed, 41 insertions, 28 deletions
@@ -5,7 +5,7 @@ \setlength\headheight{13.6pt} \usepackage{ - amsmath, amsthm, amssymb, mathtools, commath, + amsmath, amssymb, mathtools, graphicx, xcolor, fancyhdr, hyperref, enumerate, framed } @@ -43,7 +43,19 @@ \end{cframed} } +\newcommand{\dmquestion}[1]{ + \begin{center} \textbf{#1} \end{center} +} + \newcommand{\br}[1]{\left( #1 \right)} +\newcommand*{\qed}{\hfill\ensuremath{\blacksquare}} +\newcommand*{\qedempty}{\hfill\ensuremath{\square}} + +\newcommand{\explain}[1]{ + \begin{bmatrix} + #1 + \end{bmatrix} +} \newcommand{\probability}[1]{\mathrm{Pr} \left[ #1 \right]} \newcommand{\expected}[1]{\mathrm{E} \left[ #1 \right]} @@ -51,6 +63,7 @@ \newcommand{\todo}{\texttt{todo!}} \newcommand{\osmall}[1]{\overline{o}\left( #1 \right)} +\DeclareMathOperator{\dif}{d \!} \hypersetup{colorlinks=true, linkcolor=magenta} diff --git a/sol0120.tex b/sol0120.tex index 10ecfbb..f073973 100644 --- a/sol0120.tex +++ b/sol0120.tex @@ -23,29 +23,29 @@ \] } \[ - \braced{ \frac{1}{(1 - s)x^{s - 1}} + C }' = + \ br{ \frac{1}{(1 - s)x^{s - 1}} + C }' = -\frac{0 - (1 - s)(s - 2)x^{s - 2}}{(1 - s)^2 x^{2s - 2}} = \frac{1}{x^s} \qed \] \question{Лемма 2}{ \[ - \int \frac{dx}{(x^2 + a^2)^2} = \frac{1}{2a^2} \braced{ + \int \frac{dx}{(x^2 + a^2)^2} = \frac{1}{2a^2} \ br{ \frac{x}{x^2 + a^2} + \frac{1}{a}\arctan\frac{x}{a} } + C \] } \begin{align*} - \braced{ - \frac{1}{2a^2} \braced{ + \ br{ + \frac{1}{2a^2} \ br{ \frac{x}{x^2 + a^2} + \frac{1}{a}\arctan\frac{x}{a} } }' = - \frac{1}{2a^2} \braced{ + \frac{1}{2a^2} \ br{ \frac{x^2 + a^2 - 2x^2}{(x^2 + a^2)^2} + \frac{1}{x^2 + a^2} } = - \frac{1}{2a^2} \braced{ + \frac{1}{2a^2} \ br{ \frac{2a^2}{(x^2 + a^2)^2} } = \frac{1}{(x^2 + a^2)^2} \qed @@ -115,7 +115,7 @@ \begin{gather*} \frac{1}{8}\int \frac{x + 2}{x^2 + 2x + 2} dx + \frac{1}{8}\int \frac{2 - x}{x^2 - 2x + 2} dx =\\ - =\frac{1}{16}\braced{ + =\frac{1}{16}\ br{ \log | x^2 + 2x + 2 | + 2\arctan(x + 1) - \log | x^2 - 2x + 2 | + 2\arctan(x - 1) } + \bar{C} @@ -123,7 +123,7 @@ \question{(seminar0113) 8.b}{ \[ - \int \frac{x^5 - x}{x^8 + 1}dx = \frac{\sqrt{2}}{8} \braced{ + \int \frac{x^5 - x}{x^8 + 1}dx = \frac{\sqrt{2}}{8} \ br{ \log |x^4 - \sqrt{2} x^2 + 1| - \log |x^4 + \sqrt{2} x^2 + 1| } + \bar{C} \] @@ -140,7 +140,7 @@ \frac{1}{2} \int \frac{u^2 - 1}{u^4 + 1} du \] \[ - u^4 + 1 = \braced{u^2 + \sqrt{2} u + 1}\braced{u^2 - \sqrt{2} u + 1} + u^4 + 1 = \ br{u^2 + \sqrt{2} u + 1}\ br{u^2 - \sqrt{2} u + 1} \] \[ \frac{u^2 - 1}{u^4 + 1} = @@ -172,7 +172,7 @@ \begin{gather*} \int \frac{-u - \invsq}{u^2 + \sqrt{2} u + 1} du =\\ -\int \frac{u + \invsq}{u^2 + \sqrt{2} u + 1} du =\\ - -\frac{1}{2} \int \frac{d \braced{ u^2 + \sqrt{2} u + 1 }}{u^2 + \sqrt{2} u + 1} =\\ + -\frac{1}{2} \int \frac{d \ br{ u^2 + \sqrt{2} u + 1 }}{u^2 + \sqrt{2} u + 1} =\\ -\frac{1}{2} \log |u^2 + \sqrt{2} u + 1| + C_1 \end{gather*} \end{minipage} @@ -182,7 +182,7 @@ \begin{gather*} \int \frac{u - \invsq}{u^2 - \sqrt{2} u + 1} du =\\ \int \frac{u + \invsq}{u^2 - \sqrt{2} u + 1} du =\\ - \frac{1}{2} \int \frac{d \braced{ u^2 - \sqrt{2} u + 1 }}{u^2 - \sqrt{2} u + 1} =\\ + \frac{1}{2} \int \frac{d \ br{ u^2 - \sqrt{2} u + 1 }}{u^2 - \sqrt{2} u + 1} =\\ \frac{1}{2} \log |u^2 - \sqrt{2} u + 1| + C_2 \end{gather*} \end{tabular} @@ -190,7 +190,7 @@ \[ \frac{1}{2} \int \frac{u^2 - 1}{u^4 + 1} du = - \frac{\sqrt{2}}{8} \braced{ + \frac{\sqrt{2}}{8} \ br{ \log |u^2 - \sqrt{2} u + 1| - \log |u^2 + \sqrt{2} u + 1| } + C_3 \] @@ -198,7 +198,7 @@ Обратно к $x$: \[ \int \frac{x^5 - x}{x^8 + 1}dx = - \frac{\sqrt{2}}{8} \braced{ + \frac{\sqrt{2}}{8} \ br{ \log |x^4 - \sqrt{2} x^2 + 1| - \log |x^4 + \sqrt{2} x^2 + 1| } + \bar{C} \] @@ -206,7 +206,7 @@ \clearpage \question{(seminar0113) 13}{ \[ - \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \braced{ + \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \ br{ -8 \log |x + 2| + 6 \log |x + 3| + \log (x^2 + 1) + 2\arctan x } + \bar{C} \] @@ -230,23 +230,23 @@ \int -\frac{2}{5} \frac{dx}{x + 2} = -\frac{2 \log |x + 2|}{5} + C_1\\[16pt] \int \frac{3}{10} \frac{dx}{x + 3} = \frac{3 \log |x + 3|}{10} + C_2\\[16pt] \int \frac{1}{10} \frac{(x + 1) dx}{x^2 + 1} = - \frac{1}{10} \braced{ + \frac{1}{10} \ br{ \frac{1}{2}\int \frac{2x \ dx}{x^2 + 1} + \int \frac{dx}{x^2 + 1} } = - \frac{1}{10} \braced{ + \frac{1}{10} \ br{ \frac{1}{2} \log (x^2 + 1) + \arctan(x) } + C_3 \end{gather*} \[ - \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \braced{ + \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \ br{ -8 \log |x + 2| + 6 \log |x + 3| + \log (x^2 + 1) + 2\arctan x } + \bar{C} \] \question{(seminar0120) 2.4}{ \[ - \int \frac{dx}{x(x^2 + 1)^2} = -\frac{1}{2} \braced{ + \int \frac{dx}{x(x^2 + 1)^2} = -\frac{1}{2} \ br{ -\log (x^2 + 1) + \frac{1}{x^2 + 1} + 2\log |x| @@ -324,24 +324,24 @@ \text{Лемма 1} \end{bmatrix}\\[8pt] \int \frac{-2x + 3}{9(x^2 - x + 1)}dx &= - -\frac{1}{9} \braced{ + -\frac{1}{9} \ br{ \int \frac{(2x - 1) dx}{x^2 - x + 1} - - \int \frac{2 dx}{\braced{ x - \frac{1}{2} }^2 + \frac{3}{4}} + \int \frac{2 dx}{\ br{ x - \frac{1}{2} }^2 + \frac{3}{4}} }\nonumber \\[8pt] &= - -\frac{1}{9} \braced{ + -\frac{1}{9} \ br{ \log (x^2 - x + 1) - \frac{4}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}} } + C_3\\[8pt] \frac{1}{3} \int \frac{(1 - x)dx}{(x^2 - x + 1)^2} &= - -\frac{1}{6} \braced{ + -\frac{1}{6} \ br{ \int \frac{(2x - 1)dx}{(x^2 - x + 1)^2} - - \int \frac{dx}{\braced{ \braced{ x - \frac{1}{2} }^2 + \frac{3}{4} }^2} + \int \frac{dx}{\ br{ \ br{ x - \frac{1}{2} }^2 + \frac{3}{4} }^2} }\nonumber \\[8pt] &= - -\frac{1}{6} \braced{ + -\frac{1}{6} \ br{ -\frac{1}{x^2 - x + 1} + - \frac{2}{3} \braced{ + \frac{2}{3} \ br{ \frac{x}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \arctan\frac{2x - 1}{\sqrt{3}} } @@ -351,7 +351,7 @@ \text{Лемма 2 на правую часть} \end{bmatrix} \nonumber \\[8pt] - &= \frac{1}{9} \braced{ + &= \frac{1}{9} \ br{ \frac{2x - 1}{x^2 - x + 1} - \frac{2}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}} } + C_4 @@ -363,7 +363,7 @@ \int \frac{dx}{9(x + 1)^2} + \int \frac{-2x + 3}{9(x^2 - x + 1)}dx + \frac{1}{3} \int \frac{(1 - x)dx}{(x^2 - x + 1)^2} =\\[16pt] - \frac{1}{9} \braced{ + \frac{1}{9} \ br{ 2\log |x + 1| - \frac{1}{x + 1} - \log(x^2 - x + 1) + \frac{4}{\sqrt{3}}\arctan \frac{2x - 1}{\sqrt{3}} - \frac{2x - 1}{x^2 - x + 1} - \frac{2}{\sqrt{3}}\arctan\frac{2x - 1}{\sqrt{3}} |