summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorsyn <isaqtm@gmail.com>2020-02-04 10:43:02 +0300
committersyn <isaqtm@gmail.com>2020-02-04 10:43:02 +0300
commit8af2046bf8bbcb512b6040ca15079ca9618d37a4 (patch)
tree96881b5f81db0b69ddfbd582b48fe92750703623
parent867708801b4d27ea69c273075f23ebeb13730a5f (diff)
downloadtex2-8af2046bf8bbcb512b6040ca15079ca9618d37a4.tar.gz
[breaks things] remove some packages
-rw-r--r--intro.tex15
-rw-r--r--sol0120.tex54
2 files changed, 41 insertions, 28 deletions
diff --git a/intro.tex b/intro.tex
index cf1846d..a196602 100644
--- a/intro.tex
+++ b/intro.tex
@@ -5,7 +5,7 @@
\setlength\headheight{13.6pt}
\usepackage{
- amsmath, amsthm, amssymb, mathtools, commath,
+ amsmath, amssymb, mathtools,
graphicx, xcolor,
fancyhdr, hyperref, enumerate, framed
}
@@ -43,7 +43,19 @@
\end{cframed}
}
+\newcommand{\dmquestion}[1]{
+ \begin{center} \textbf{#1} \end{center}
+}
+
\newcommand{\br}[1]{\left( #1 \right)}
+\newcommand*{\qed}{\hfill\ensuremath{\blacksquare}}
+\newcommand*{\qedempty}{\hfill\ensuremath{\square}}
+
+\newcommand{\explain}[1]{
+ \begin{bmatrix}
+ #1
+ \end{bmatrix}
+}
\newcommand{\probability}[1]{\mathrm{Pr} \left[ #1 \right]}
\newcommand{\expected}[1]{\mathrm{E} \left[ #1 \right]}
@@ -51,6 +63,7 @@
\newcommand{\todo}{\texttt{todo!}}
\newcommand{\osmall}[1]{\overline{o}\left( #1 \right)}
+\DeclareMathOperator{\dif}{d \!}
\hypersetup{colorlinks=true, linkcolor=magenta}
diff --git a/sol0120.tex b/sol0120.tex
index 10ecfbb..f073973 100644
--- a/sol0120.tex
+++ b/sol0120.tex
@@ -23,29 +23,29 @@
\]
}
\[
- \braced{ \frac{1}{(1 - s)x^{s - 1}} + C }' =
+ \ br{ \frac{1}{(1 - s)x^{s - 1}} + C }' =
-\frac{0 - (1 - s)(s - 2)x^{s - 2}}{(1 - s)^2 x^{2s - 2}} =
\frac{1}{x^s} \qed
\]
\question{Лемма 2}{
\[
- \int \frac{dx}{(x^2 + a^2)^2} = \frac{1}{2a^2} \braced{
+ \int \frac{dx}{(x^2 + a^2)^2} = \frac{1}{2a^2} \ br{
\frac{x}{x^2 + a^2} + \frac{1}{a}\arctan\frac{x}{a}
} + C
\]
}
\begin{align*}
- \braced{
- \frac{1}{2a^2} \braced{
+ \ br{
+ \frac{1}{2a^2} \ br{
\frac{x}{x^2 + a^2} + \frac{1}{a}\arctan\frac{x}{a}
}
}' =
- \frac{1}{2a^2} \braced{
+ \frac{1}{2a^2} \ br{
\frac{x^2 + a^2 - 2x^2}{(x^2 + a^2)^2} + \frac{1}{x^2 + a^2}
} =
- \frac{1}{2a^2} \braced{
+ \frac{1}{2a^2} \ br{
\frac{2a^2}{(x^2 + a^2)^2}
} =
\frac{1}{(x^2 + a^2)^2} \qed
@@ -115,7 +115,7 @@
\begin{gather*}
\frac{1}{8}\int \frac{x + 2}{x^2 + 2x + 2} dx +
\frac{1}{8}\int \frac{2 - x}{x^2 - 2x + 2} dx =\\
- =\frac{1}{16}\braced{
+ =\frac{1}{16}\ br{
\log | x^2 + 2x + 2 | + 2\arctan(x + 1) -
\log | x^2 - 2x + 2 | + 2\arctan(x - 1)
} + \bar{C}
@@ -123,7 +123,7 @@
\question{(seminar0113) 8.b}{
\[
- \int \frac{x^5 - x}{x^8 + 1}dx = \frac{\sqrt{2}}{8} \braced{
+ \int \frac{x^5 - x}{x^8 + 1}dx = \frac{\sqrt{2}}{8} \ br{
\log |x^4 - \sqrt{2} x^2 + 1| - \log |x^4 + \sqrt{2} x^2 + 1|
} + \bar{C}
\]
@@ -140,7 +140,7 @@
\frac{1}{2} \int \frac{u^2 - 1}{u^4 + 1} du
\]
\[
- u^4 + 1 = \braced{u^2 + \sqrt{2} u + 1}\braced{u^2 - \sqrt{2} u + 1}
+ u^4 + 1 = \ br{u^2 + \sqrt{2} u + 1}\ br{u^2 - \sqrt{2} u + 1}
\]
\[
\frac{u^2 - 1}{u^4 + 1} =
@@ -172,7 +172,7 @@
\begin{gather*}
\int \frac{-u - \invsq}{u^2 + \sqrt{2} u + 1} du =\\
-\int \frac{u + \invsq}{u^2 + \sqrt{2} u + 1} du =\\
- -\frac{1}{2} \int \frac{d \braced{ u^2 + \sqrt{2} u + 1 }}{u^2 + \sqrt{2} u + 1} =\\
+ -\frac{1}{2} \int \frac{d \ br{ u^2 + \sqrt{2} u + 1 }}{u^2 + \sqrt{2} u + 1} =\\
-\frac{1}{2} \log |u^2 + \sqrt{2} u + 1| + C_1
\end{gather*}
\end{minipage}
@@ -182,7 +182,7 @@
\begin{gather*}
\int \frac{u - \invsq}{u^2 - \sqrt{2} u + 1} du =\\
\int \frac{u + \invsq}{u^2 - \sqrt{2} u + 1} du =\\
- \frac{1}{2} \int \frac{d \braced{ u^2 - \sqrt{2} u + 1 }}{u^2 - \sqrt{2} u + 1} =\\
+ \frac{1}{2} \int \frac{d \ br{ u^2 - \sqrt{2} u + 1 }}{u^2 - \sqrt{2} u + 1} =\\
\frac{1}{2} \log |u^2 - \sqrt{2} u + 1| + C_2
\end{gather*}
\end{tabular}
@@ -190,7 +190,7 @@
\[
\frac{1}{2} \int \frac{u^2 - 1}{u^4 + 1} du =
- \frac{\sqrt{2}}{8} \braced{
+ \frac{\sqrt{2}}{8} \ br{
\log |u^2 - \sqrt{2} u + 1| - \log |u^2 + \sqrt{2} u + 1|
} + C_3
\]
@@ -198,7 +198,7 @@
Обратно к $x$:
\[
\int \frac{x^5 - x}{x^8 + 1}dx =
- \frac{\sqrt{2}}{8} \braced{
+ \frac{\sqrt{2}}{8} \ br{
\log |x^4 - \sqrt{2} x^2 + 1| - \log |x^4 + \sqrt{2} x^2 + 1|
} + \bar{C}
\]
@@ -206,7 +206,7 @@
\clearpage
\question{(seminar0113) 13}{
\[
- \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \braced{
+ \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \ br{
-8 \log |x + 2| + 6 \log |x + 3| + \log (x^2 + 1) + 2\arctan x
} + \bar{C}
\]
@@ -230,23 +230,23 @@
\int -\frac{2}{5} \frac{dx}{x + 2} = -\frac{2 \log |x + 2|}{5} + C_1\\[16pt]
\int \frac{3}{10} \frac{dx}{x + 3} = \frac{3 \log |x + 3|}{10} + C_2\\[16pt]
\int \frac{1}{10} \frac{(x + 1) dx}{x^2 + 1} =
- \frac{1}{10} \braced{
+ \frac{1}{10} \ br{
\frac{1}{2}\int \frac{2x \ dx}{x^2 + 1} + \int \frac{dx}{x^2 + 1}
} =
- \frac{1}{10} \braced{
+ \frac{1}{10} \ br{
\frac{1}{2} \log (x^2 + 1) + \arctan(x)
} + C_3
\end{gather*}
\[
- \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \braced{
+ \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \ br{
-8 \log |x + 2| + 6 \log |x + 3| + \log (x^2 + 1) + 2\arctan x
} + \bar{C}
\]
\question{(seminar0120) 2.4}{
\[
- \int \frac{dx}{x(x^2 + 1)^2} = -\frac{1}{2} \braced{
+ \int \frac{dx}{x(x^2 + 1)^2} = -\frac{1}{2} \ br{
-\log (x^2 + 1) +
\frac{1}{x^2 + 1} +
2\log |x|
@@ -324,24 +324,24 @@
\text{Лемма 1}
\end{bmatrix}\\[8pt]
\int \frac{-2x + 3}{9(x^2 - x + 1)}dx &=
- -\frac{1}{9} \braced{
+ -\frac{1}{9} \ br{
\int \frac{(2x - 1) dx}{x^2 - x + 1} -
- \int \frac{2 dx}{\braced{ x - \frac{1}{2} }^2 + \frac{3}{4}}
+ \int \frac{2 dx}{\ br{ x - \frac{1}{2} }^2 + \frac{3}{4}}
}\nonumber \\[8pt]
&=
- -\frac{1}{9} \braced{
+ -\frac{1}{9} \ br{
\log (x^2 - x + 1) -
\frac{4}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}}
} + C_3\\[8pt]
\frac{1}{3} \int \frac{(1 - x)dx}{(x^2 - x + 1)^2} &=
- -\frac{1}{6} \braced{
+ -\frac{1}{6} \ br{
\int \frac{(2x - 1)dx}{(x^2 - x + 1)^2} -
- \int \frac{dx}{\braced{ \braced{ x - \frac{1}{2} }^2 + \frac{3}{4} }^2}
+ \int \frac{dx}{\ br{ \ br{ x - \frac{1}{2} }^2 + \frac{3}{4} }^2}
}\nonumber \\[8pt]
&=
- -\frac{1}{6} \braced{
+ -\frac{1}{6} \ br{
-\frac{1}{x^2 - x + 1} +
- \frac{2}{3} \braced{
+ \frac{2}{3} \ br{
\frac{x}{x^2 - x + 1} +
\frac{2}{\sqrt{3}} \arctan\frac{2x - 1}{\sqrt{3}}
}
@@ -351,7 +351,7 @@
\text{Лемма 2 на правую часть}
\end{bmatrix}
\nonumber \\[8pt]
- &= \frac{1}{9} \braced{
+ &= \frac{1}{9} \ br{
\frac{2x - 1}{x^2 - x + 1} -
\frac{2}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}}
} + C_4
@@ -363,7 +363,7 @@
\int \frac{dx}{9(x + 1)^2} +
\int \frac{-2x + 3}{9(x^2 - x + 1)}dx +
\frac{1}{3} \int \frac{(1 - x)dx}{(x^2 - x + 1)^2} =\\[16pt]
- \frac{1}{9} \braced{
+ \frac{1}{9} \ br{
2\log |x + 1| - \frac{1}{x + 1}
- \log(x^2 - x + 1) + \frac{4}{\sqrt{3}}\arctan \frac{2x - 1}{\sqrt{3}}
- \frac{2x - 1}{x^2 - x + 1} - \frac{2}{\sqrt{3}}\arctan\frac{2x - 1}{\sqrt{3}}