diff options
author | syn <isaqtm@gmail.com> | 2020-04-15 04:35:30 +0300 |
---|---|---|
committer | syn <isaqtm@gmail.com> | 2020-04-15 04:35:30 +0300 |
commit | f642380d55c66e4e5deaaa6c7cef15f6dbfe36c6 (patch) | |
tree | 31ed9377de27678b376668131e0cbf8a8639ce16 /sol0120.tex | |
parent | 406cd62e6c18587b2859bf77434527f2ac87027d (diff) | |
download | tex2-f642380d55c66e4e5deaaa6c7cef15f6dbfe36c6.tar.gz |
Reorganize & alg-1
Diffstat (limited to 'sol0120.tex')
-rw-r--r-- | sol0120.tex | 372 |
1 files changed, 0 insertions, 372 deletions
diff --git a/sol0120.tex b/sol0120.tex deleted file mode 100644 index f073973..0000000 --- a/sol0120.tex +++ /dev/null @@ -1,372 +0,0 @@ -\documentclass[10pt,a5paper]{article} -\usepackage[svgnames, rgb]{xcolor} - -\input{intro} - -\lhead{\color{gray} Шарафатдинов Камиль 192} -\rhead{\color{gray} ДЗ к 27.01 (\texttt{sol0113 + sol0120})} -\title{ДЗ на 27.01} -\author{Шарафатдинов Камиль БПМИ-192} -\date{билд: \today} - - -% -- Here bet dragons -- -\begin{document}\thispagestyle{empty} - -\maketitle -\clearpage -\setcounter{page}{1} - -\question{Лемма 1}{ - \[ - \int \frac{dx}{x^s} = \frac{1}{(1 - s)x^{s - 1}} + C - \] -} - \[ - \ br{ \frac{1}{(1 - s)x^{s - 1}} + C }' = - -\frac{0 - (1 - s)(s - 2)x^{s - 2}}{(1 - s)^2 x^{2s - 2}} = - \frac{1}{x^s} \qed - \] - -\question{Лемма 2}{ - \[ - \int \frac{dx}{(x^2 + a^2)^2} = \frac{1}{2a^2} \ br{ - \frac{x}{x^2 + a^2} + \frac{1}{a}\arctan\frac{x}{a} - } + C - \] -} - - \begin{align*} - \ br{ - \frac{1}{2a^2} \ br{ - \frac{x}{x^2 + a^2} + \frac{1}{a}\arctan\frac{x}{a} - } - }' = - \frac{1}{2a^2} \ br{ - \frac{x^2 + a^2 - 2x^2}{(x^2 + a^2)^2} + \frac{1}{x^2 + a^2} - } = - \frac{1}{2a^2} \ br{ - \frac{2a^2}{(x^2 + a^2)^2} - } = - \frac{1}{(x^2 + a^2)^2} \qed - \end{align*} - -\question{(seminar0113) 7.3}{ - \[ - \int \frac{dx}{x^4 + 4} = \frac{ - \log | x^2 + 2x + 2 | + 2\arctan(x + 1) - - \log | x^2 - 2x + 2 | + 2\arctan(x - 1) - }{16} + \bar{C} - \] -} - - \[ - x^4 + 4 = (x - (1 + i))(x - (i - 1))(x - (-i - 1))(x - (-i + 1)) = - (x^2 + 2x + 2)(x^2 - 2x + 2) - \] - - \[ - \frac{1}{x^4 + 4} = \frac{Ax + B}{x^2 + 2x + 2} + \frac{Cx + D}{x^2 - 2x + 2} - \] - - \[ - (Ax + B)(x^2 - 2x + 2) + (Cx + D)(x^2 + 2x + 2) \equiv 1 - \] - - С помощью давно забытой китайской техники решения систем уравнений получаем: - \[\begin{cases*} - A = \frac{1}{8}\\ - B = \frac{1}{4}\\ - C = -\frac{1}{8}\\ - D = \frac{1}{4}\\ - \end{cases*}\] - - \[ - \int \frac{1}{x^4 + 4} = - \frac{1}{8}\int \frac{x + 2}{x^2 + 2x + 2} dx + - \frac{1}{8}\int \frac{2 - x}{x^2 - 2x + 2} dx - \] - - \begin{minipage}{0.45\textwidth} - \setlength{\jot}{16pt} - \begin{gather*} - \int \frac{x + 2}{x^2 + 2x + 2} dx =\\ - \int \frac{x + 2}{(x + 1)^2 + 1} dx =\\ - \int \frac{(x + 1) dx}{(x + 1)^2 + 1} + \int \frac{dx}{(x + 1)^2 + 1} =\\ - =\begin{bmatrix} \frac{d(x^2 + 2x + 2)}{2} = (x + 1)dx \end{bmatrix} =\\ - \int \frac{\frac{1}{2}d( (x + 1)^2 + 1 )}{(x + 1)^2 + 1} + \arctan(x + 1) =\\ - = \frac{1}{2}\log | x^2 + 2x + 2 | + \arctan(x + 1) + C_1 - \end{gather*} - \end{minipage} - \begin{minipage}{0.45\textwidth} - \begin{tabular}{|p{\textwidth}} - \setlength{\jot}{16pt} - \begin{gather*} - \int \frac{2 - x}{x^2 - 2x + 2} dx =\\ - -\int \frac{x - 2}{(x - 1)^2 + 1} dx =\\ - -\int \frac{(x - 1) dx}{(x - 1)^2 + 1} + \int \frac{dx}{(x - 1)^2 + 1} =\\ - =\begin{bmatrix} \frac{d(x^2 - 2x + 2)}{2} = (x - 1)dx \end{bmatrix} =\\ - -\int \frac{\frac{1}{2}d( (x - 1)^2 + 1 )}{(x - 1)^2 + 1} + \arctan(x - 1) =\\ - = -\frac{1}{2}\log | x^2 - 2x + 2 | + \arctan(x - 1) + C_2 - \end{gather*} - \end{tabular} - \end{minipage} - - \begin{gather*} - \frac{1}{8}\int \frac{x + 2}{x^2 + 2x + 2} dx + - \frac{1}{8}\int \frac{2 - x}{x^2 - 2x + 2} dx =\\ - =\frac{1}{16}\ br{ - \log | x^2 + 2x + 2 | + 2\arctan(x + 1) - - \log | x^2 - 2x + 2 | + 2\arctan(x - 1) - } + \bar{C} - \end{gather*} - -\question{(seminar0113) 8.b}{ - \[ - \int \frac{x^5 - x}{x^8 + 1}dx = \frac{\sqrt{2}}{8} \ br{ - \log |x^4 - \sqrt{2} x^2 + 1| - \log |x^4 + \sqrt{2} x^2 + 1| - } + \bar{C} - \] -} - - \[ - \int \frac{x^5 - x}{x^8 + 1}dx = - \int \frac{x(x^4 - 1}{x^8 + 1}dx = - \begin{bmatrix} - u = x^2\\ - dx = \frac{du}{2x} - \end{bmatrix} = - \int \frac{x(u^2 - 1)}{u^4 + 1}\frac{du}{2x} = - \frac{1}{2} \int \frac{u^2 - 1}{u^4 + 1} du - \] - \[ - u^4 + 1 = \ br{u^2 + \sqrt{2} u + 1}\ br{u^2 - \sqrt{2} u + 1} - \] - \[ - \frac{u^2 - 1}{u^4 + 1} = - \frac{Au + B}{u^2 + \sqrt{2} u + 1} + - \frac{Cu + D}{u^2 - \sqrt{2} u + 1} - \] - - \[ - (Au + B)(u^2 - \sqrt{2}u + 1) + (Cu + D)(u^2 + \sqrt{2}u + 1) \equiv u^2 - 1 - \] - - Все тем же китайским методом: - \[\begin{cases*} - A = -\frac{\sqrt{2}}{2}\\ - B = -\frac{1}{2}\\ - C = \frac{\sqrt{2}}{2}\\ - D = -\frac{1}{2}\\ - \end{cases*}\] - - \newcommand{\invsq}{\frac{\sqrt{2}}{2}} - \[ - \int \frac{u^2 - 1}{u^4 + 1} du = - \invsq \int \frac{-u - \invsq}{u^2 + \sqrt{2} u + 1} du + - \invsq \int \frac{u - \invsq}{u^2 - \sqrt{2} u + 1} du - \] - - \begin{minipage}{0.45\textwidth} - \setlength{\jot}{16pt} - \begin{gather*} - \int \frac{-u - \invsq}{u^2 + \sqrt{2} u + 1} du =\\ - -\int \frac{u + \invsq}{u^2 + \sqrt{2} u + 1} du =\\ - -\frac{1}{2} \int \frac{d \ br{ u^2 + \sqrt{2} u + 1 }}{u^2 + \sqrt{2} u + 1} =\\ - -\frac{1}{2} \log |u^2 + \sqrt{2} u + 1| + C_1 - \end{gather*} - \end{minipage} - \begin{minipage}{0.45\textwidth} - \begin{tabular}{|p{\textwidth}} - \setlength{\jot}{16pt} - \begin{gather*} - \int \frac{u - \invsq}{u^2 - \sqrt{2} u + 1} du =\\ - \int \frac{u + \invsq}{u^2 - \sqrt{2} u + 1} du =\\ - \frac{1}{2} \int \frac{d \ br{ u^2 - \sqrt{2} u + 1 }}{u^2 - \sqrt{2} u + 1} =\\ - \frac{1}{2} \log |u^2 - \sqrt{2} u + 1| + C_2 - \end{gather*} - \end{tabular} - \end{minipage} - - \[ - \frac{1}{2} \int \frac{u^2 - 1}{u^4 + 1} du = - \frac{\sqrt{2}}{8} \ br{ - \log |u^2 - \sqrt{2} u + 1| - \log |u^2 + \sqrt{2} u + 1| - } + C_3 - \] - - Обратно к $x$: - \[ - \int \frac{x^5 - x}{x^8 + 1}dx = - \frac{\sqrt{2}}{8} \ br{ - \log |x^4 - \sqrt{2} x^2 + 1| - \log |x^4 + \sqrt{2} x^2 + 1| - } + \bar{C} - \] - -\clearpage -\question{(seminar0113) 13}{ - \[ - \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \ br{ - -8 \log |x + 2| + 6 \log |x + 3| + \log (x^2 + 1) + 2\arctan x - } + \bar{C} - \] -} - \[ - \frac{x}{(x^2 + 1)(x + 2)(x + 3)} = - \frac{Ax + B}{x^2 + 1} + \frac{C}{x + 2} + \frac{D}{x + 3} - \] - - \[ - (Ax + B)(x + 2)(x + 3) + C(x^2 + 1)(x + 3) + D(x^2 + 1)(x + 2) \equiv x - \] - \[\begin{cases*} - A = 0.1\\ - B = 0.1\\ - C = -0.4\\ - D = 0.3\\ - \end{cases*}\] - - \begin{gather*} - \int -\frac{2}{5} \frac{dx}{x + 2} = -\frac{2 \log |x + 2|}{5} + C_1\\[16pt] - \int \frac{3}{10} \frac{dx}{x + 3} = \frac{3 \log |x + 3|}{10} + C_2\\[16pt] - \int \frac{1}{10} \frac{(x + 1) dx}{x^2 + 1} = - \frac{1}{10} \ br{ - \frac{1}{2}\int \frac{2x \ dx}{x^2 + 1} + \int \frac{dx}{x^2 + 1} - } = - \frac{1}{10} \ br{ - \frac{1}{2} \log (x^2 + 1) + \arctan(x) - } + C_3 - \end{gather*} - - \[ - \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \ br{ - -8 \log |x + 2| + 6 \log |x + 3| + \log (x^2 + 1) + 2\arctan x - } + \bar{C} - \] - -\question{(seminar0120) 2.4}{ - \[ - \int \frac{dx}{x(x^2 + 1)^2} = -\frac{1}{2} \ br{ - -\log (x^2 + 1) + - \frac{1}{x^2 + 1} + - 2\log |x| - } + \bar{C} - \] -} - - \[ - \frac{1}{x(x^2 + 1)^2} = - \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{(x^2 + 1)^2} + \frac{E}{x} - \] - - \[ - (Ax + B)(x^2 + 1)x + (Cx + D)x + E(x^2 + 1)^2 \equiv 1 - \] - - \[\begin{cases*} - A = -1\\ - B = 0\\ - C = -1\\ - D = 0\\ - E = 1 - \end{cases*}\] - - \begin{gather*} - \int - \frac{x \ dx}{x^2 + 1} = - -\frac{1}{2} \int \frac{2x \ dx}{x^2 + 1} = - -\frac{1}{2} \log (x^2 + 1) + C_1\\[12pt] - \int - \frac{x \ dx}{(x^2 + 1)^2} = - -\frac{1}{2} \int \frac{2x \ dx}{(x^2 + 1)^2} = - \begin{bmatrix} - \displaystyle \int \frac{dx}{x^s} = \frac{1}{(1 - s)x^{s - 1}} + C - \end{bmatrix} = - \frac{1}{2(x^2 + 1)} + C_2\\[12pt] - \int \frac{dx}{x} = \log |x| + C_3 - \end{gather*} - - \[ - \int \frac{dx}{x(x^2 + 1)^2} = - -\frac{1}{2} \log (x^2 + 1) + - \frac{1}{2(x^2 + 1)} + - \log |x| + \bar{C} - \] - -\question{(seminar0120) 11}{ - \[ - \int \frac{dx}{(x^3 + 1)^2} - \] -} - - \[ - \frac{1}{(x^3 + 1)^2} = \frac{1}{(x + 1)^2(x^2 - x + 1)^2} = - \frac{A}{x + 1} + \frac{B}{(x + 1)^2} + \frac{Cx + D}{x^2 - x + 1} + \frac{Ex + F}{(x^2 - x + 1)^2} - \] - - \[ - A(x^2 - x + 1)^2(x + 1) + - B(x^2 - x + 1)^2 + - (Cx + D)(x + 1)^2(x^2 - x + 1) + - (Ex + F)(x + 1)^2 \equiv 1 - \] - \[\begin{cases*} - A = 2/9\\ - B = 1/9\\ - C = -2/9, \ \ - D = 1/3\\ - E = -1/3, \ \ - F = 1/3\\ - \end{cases*}\] - - \begin{align} - \int \frac{2dx}{9(x + 1)} &= \frac{2}{9} \log |x + 1| + C_1 &\\[8pt] - \int \frac{dx}{9(x + 1)^2} & = -\frac{1}{9(x + 1)} + C_2 & - \begin{bmatrix} - \text{Лемма 1} - \end{bmatrix}\\[8pt] - \int \frac{-2x + 3}{9(x^2 - x + 1)}dx &= - -\frac{1}{9} \ br{ - \int \frac{(2x - 1) dx}{x^2 - x + 1} - - \int \frac{2 dx}{\ br{ x - \frac{1}{2} }^2 + \frac{3}{4}} - }\nonumber \\[8pt] - &= - -\frac{1}{9} \ br{ - \log (x^2 - x + 1) - - \frac{4}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}} - } + C_3\\[8pt] - \frac{1}{3} \int \frac{(1 - x)dx}{(x^2 - x + 1)^2} &= - -\frac{1}{6} \ br{ - \int \frac{(2x - 1)dx}{(x^2 - x + 1)^2} - - \int \frac{dx}{\ br{ \ br{ x - \frac{1}{2} }^2 + \frac{3}{4} }^2} - }\nonumber \\[8pt] - &= - -\frac{1}{6} \ br{ - -\frac{1}{x^2 - x + 1} + - \frac{2}{3} \ br{ - \frac{x}{x^2 - x + 1} + - \frac{2}{\sqrt{3}} \arctan\frac{2x - 1}{\sqrt{3}} - } - } + C_4 - &\begin{bmatrix} - \text{Лемма 1 на левую часть}\\ - \text{Лемма 2 на правую часть} - \end{bmatrix} - \nonumber \\[8pt] - &= \frac{1}{9} \ br{ - \frac{2x - 1}{x^2 - x + 1} - - \frac{2}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}} - } + C_4 - \end{align} - - \begin{gather*} - \int \frac{1}{(x^3 + 1)^2} = - \int \frac{2dx}{9(x + 1)} + - \int \frac{dx}{9(x + 1)^2} + - \int \frac{-2x + 3}{9(x^2 - x + 1)}dx + - \frac{1}{3} \int \frac{(1 - x)dx}{(x^2 - x + 1)^2} =\\[16pt] - \frac{1}{9} \ br{ - 2\log |x + 1| - \frac{1}{x + 1} - - \log(x^2 - x + 1) + \frac{4}{\sqrt{3}}\arctan \frac{2x - 1}{\sqrt{3}} - - \frac{2x - 1}{x^2 - x + 1} - \frac{2}{\sqrt{3}}\arctan\frac{2x - 1}{\sqrt{3}} - } + C - \end{gather*} -\end{document}
\ No newline at end of file |