diff options
author | syn <isaqtm@gmail.com> | 2020-04-15 04:35:30 +0300 |
---|---|---|
committer | syn <isaqtm@gmail.com> | 2020-04-15 04:35:30 +0300 |
commit | f642380d55c66e4e5deaaa6c7cef15f6dbfe36c6 (patch) | |
tree | 31ed9377de27678b376668131e0cbf8a8639ce16 /sol0203.tex | |
parent | 406cd62e6c18587b2859bf77434527f2ac87027d (diff) | |
download | tex2-f642380d55c66e4e5deaaa6c7cef15f6dbfe36c6.tar.gz |
Reorganize & alg-1
Diffstat (limited to 'sol0203.tex')
-rw-r--r-- | sol0203.tex | 282 |
1 files changed, 0 insertions, 282 deletions
diff --git a/sol0203.tex b/sol0203.tex deleted file mode 100644 index f568637..0000000 --- a/sol0203.tex +++ /dev/null @@ -1,282 +0,0 @@ -\documentclass[10pt,a5paper]{article} -\usepackage[svgnames, rgb]{xcolor} - -\input{intro} - -\lhead{\color{gray} Шарафатдинов Камиль 192} -\rhead{\color{gray} \texttt{sol0203}} -\title{ДЗ на 10.02} -\author{Шарафатдинов Камиль БПМИ-192} -\date{билд: \today} - - -% -- Here bet dragons -- -\begin{document}\thispagestyle{empty} - -\maketitle -\clearpage -\setcounter{page}{1} - - -\newcommand{\deft}{\texttt{\\deft is undefined}} - - -\question{1.b}{ - \[ - \int \frac{\dif x}{\sqrt[6]{(x - 7)^7(x - 5)^5}} - = -3\sqrt[6]{\dfrac{x - 5}{x - 7}} + C - \] -} - - \begin{align*} - \int \frac{\dif x}{\sqrt[6]{(x - 7)^7(x - 5)^5}} - &= -6 \int \frac{t^7 \dif t}{t^7 \br{ \sqrt[6]{x - 5} }^5} - &\explain{ - \displaystyle t = \sqrt[6]{\frac{1}{x - 7}}\\[8pt] - \displaystyle \frac{\dif t}{\dif x} - = -\frac{1}{6} \br{ \sqrt[6]{\frac{1}{x - 7}} }^7 - = -\frac{1}{6} t^7 - }\\[8pt] - &= -6 \int \frac{\dif t}{\br{ \sqrt[6]{x - 5} }^5}\\[8pt] - &= -6 \int \frac{t^5 \dif t}{\br{ \sqrt[6]{1 + 2t^6} }^5} - &\explain{ - \dfrac{1}{\sqrt[6]{x - 5}} - &= \displaystyle \sqrt[6]{\frac{1}{\frac{1}{t^6} + 2}}\\[8pt] - &= \dfrac{t}{\sqrt[6]{1 + 2t^6}} - }\\[8pt] - &= 3 \int \frac{u^5 \dif u}{u^7} - = 3 \int \frac{\dif u}{u^2} - &\explain{ - \displaystyle u = \dfrac{1}{\sqrt[6]{1 + 2t^6}}\\ - \displaystyle \frac{\dif u}{\dif t} = -2t^5 u^7\\ - }\\ - &= -\frac{3}{u} + C\\ - &= -3\sqrt[6]{1 + 2t^6} + C\\ - &= -3\sqrt[6]{1 + \dfrac{2}{x - 7}} + C\\ - &= -3\sqrt[6]{\dfrac{x - 5}{x - 7}} + C - \end{align*} - -\clearpage - -\question{7.c}{ - \[ - \int \frac{\dif x}{1 + \sqrt{1 - 2x - x^2}} - \] -} - - Воспользуемся почти подстановкой Эйлера: - $ - \displaystyle \sqrt{ax^2 + bx + c} = xt - \sqrt{c} - $ - - \begin{align*} - \int \frac{\dif x}{1 + \sqrt{1 - 2x - x^2}} - &= \int \frac{\dif x}{xt} - &\explain{ - \displaystyle \sqrt{1 - 2x - x^2} = xt - 1\\[4pt] - \displaystyle 1 - 2x - x^2 = x^2t^2 - 2xt + 1\\[4pt] - \displaystyle x \br{ t^2 + 1 } = t - 1\\[4pt] - \displaystyle x = \dfrac{t - 1}{t^2 + 1}\\[16pt] - \displaystyle \dfrac{\dif x}{\dif t} = -2 \dfrac{t^2 - 2t - 1}{(t^2 + 1)^2} - }\\ - &= \int \frac{-2\dfrac{t^2 - 2t - 1}{(t^2 + 1)^2} \dif t} - {2\dfrac{t - 1}{t^2 + 1} t}\\[8pt] - &= -\int \frac{(t^2 - 2t - 1)(t^2 + 1) \dif t} - {(t - 1)(t^2 + 1)^2 t}\\[8pt] - &= -\int \frac{(t^2 - 2t - 1) \dif t} - {(t - 1)(t^2 + 1) t}\\[8pt] - &= -\int \br{ - \frac{2}{t^2 + 1} + \frac{1}{t} - \frac{1}{t - 1} - } \dif t\\[8pt] - &= -2\arctan t - \log{t} + \log(t - 1) + C\\[8pt] - &= -2\arctan \dfrac{\sqrt{1 - 2x - x^2} + 1}{x} + \log \dfrac{t - 1}{t} + C\\[8pt] - &= -2\arctan \dfrac{\sqrt{1 - 2x - x^2} + 1}{x} - + \log \dfrac{\sqrt{1 - 2x - x^2} + 1 - x}{\sqrt{1 - 2x - x^2} + 1} + C\\[8pt] - \end{align*} - -\clearpage - -\question{10.b}{ - \[ - \int \frac{x^8 \dif x}{\sqrt{x^2 + 1}} - \] -} - - Лемма (вообще говоря, это задача 9): - \begin{gather*} - P \in \mathbb{R}_n[x], \qquad - Q \in \mathbb{R}_{n - 1}[x], \qquad - R = \sqrt{ax^2 + bx + c} \implies - \int \frac{P \dif x}{R} = Q R + \lambda \int \frac{\dif x}{R}\\[16pt] - \br{ QR + \lambda \int \frac{\dif x}{R}}' = - Q'R + QR' + \frac{\lambda}{R} = - \frac{Q'R^2}{R} + \frac{Q(2ax + b)}{2R} + \frac{\lambda}{R} = - \frac{Q'R^2 + \frac{1}{2} Q(2ax + b) + \lambda}{R} - \end{gather*} - - Надо бы ещё доказать, что такое $Q$ всегда найдется, но нам достаточно того, что в задаче такой $Q$ есть. - - Тогда по лемме нам надо разложить $x^8$ на слагаемые $Q'(x^2 + 1) + Qx + \lambda$ - для некоторого $Q$. - - Пусть $Q = a_7x^7 + \ldots + a_0, \quad Q' = 7a_7x^6 + \ldots + a_1$ - - Получится система линейных уравнений, которую я выписывать не буду, а выпишу сразу ответ: - \[ - Q = \frac{1}{8}x^7 - \frac{7}{48} x^5 + \frac{35}{192} x^3 - \frac{35}{128} x, \quad \lambda = \frac{35}{128} - \] - - Тогда - - \begin{align*} - \int \frac{x^8 \dif x}{\sqrt{x^2 + 1}} &= \br{ - \frac{1}{8}x^7 - \frac{7}{48} x^5 + \frac{35}{192} x^3 - \frac{35}{128} x - } \sqrt{x^2 + 1} + \frac{25}{128}\int \frac{\dif x}{\sqrt{x^2 + 1}} \\[8pt]&= - \br{ - \frac{1}{8}x^7 - \frac{7}{48} x^5 + \frac{35}{192} x^3 - \frac{35}{128} x - } \sqrt{x^2 + 1} + \frac{25}{128} \log \left|x + \sqrt{x^2 + 1}\right| + C - \end{align*} - -\question{17.b}{ - \[ - \int \frac{(x + 3) \dif x}{(x^2 + 1)\sqrt{x^2 + x + 1}} - \] -} - - \newcommand{\brac}[2]{ \br{ \dfrac{#1}{#2} } } - \newcommand{\sbrac}[2]{ \br{ \frac{#1}{#2} } } - \renewcommand{\deft}{\br{ \sqrt{x^2 + x + 1} - x }} - - \begin{gather*} - \sqrt{x^2 + x + 1} = x + t\\ - x^2 + x + 1 = x^2 + 2xt + t^2 - \end{gather*} - \begin{align*} - x &= \frac{t^2 - 1}{1 - 2t}\\ - \dif x &= -\frac{2(t^2 - t + 1)}{(1 - 2t)^2} \dif t\\ - x + t &= \frac{t^2 - t + 1}{2t - 1}\\ - x + 3 &= \frac{t^2 - 6t + 2}{1 - 2t}\\ - x^2 + 1 &= \frac{t^4 + 2t^2 - 4t + 2}{(1 - 2t)^2} - \end{align*} - - \begin{align*} - \int \frac{(x + 3) \dif x}{(x^2 + 1)\sqrt{x^2 + x + 1}} - &= -2 \int \frac{(x + 3)(t^2 - t + 1)\dif t}{(x^2 + 1)(x + t)(1 - 2t)^2}\\[8pt] - &= -2 \int \frac{ - \brac{t^2 - 6t + 2}{1 - 2t}(t^2 - t + 1) \dif t - }{ - \brac{t^4 + 2t^2 - 4t + 2}{(1 - 2t)^2} - \brac{t^2 - t + 1}{2t - 1} - (1 - 2t)^2 - }\\[8pt] - &= -2 \int - \frac{t^2 - 6t + 2}{t^4 + 2t^2 - 4t + 2} \dif t\\[8pt] - &= 2 \int \frac{t^2 - 6t + 2}{t^4 + 2t^2 - 4t + 2} \dif t\\[8pt] - &= \frac{1}{\sqrt{2}} \int \br{ - \frac{2 t - 3 \sqrt2 + 4}{-t^2 + \sqrt2 t + \sqrt2 - 2} - + \frac{2 t + 3 \sqrt2 + 4}{t^2 + \sqrt2 t + \sqrt2 + 2} - } \dif t\\[8pt] - \end{align*} - - \renewcommand{\deft}{t} - \def\firstdenum{\br{ \deft - \frac{\sqrt2}{2} }^2 + \sbrac{\sqrt{6 - 4\sqrt2}}{2}^2} - \def\firstpoly{ \deft^2 - \sqrt2 \deft - \sqrt2 + 2 } - \def\firstsqrt{ \sqrt{6 - 4\sqrt2} } - - \def\seconddenum{ \br{ \deft + \frac{\sqrt2}{2} }^2 + \sbrac{\sqrt{6 + 4\sqrt2}}{2}^2 } - \def\secondpoly{ \deft^2 + \sqrt2 \deft + \sqrt2 + 2 } - \def\secondsqrt{ \sqrt{6 + 4\sqrt2} } - - \begin{align*} - \int \frac{2 t - 3 \sqrt2 + 4}{-t^2 + \sqrt2 t + \sqrt2 - 2}\dif t - &= -2 \int \frac{t - \frac{3\sqrt2}{2} + 2}{\firstdenum}\dif t\\[8pt] - &= -2 \int \frac{t - \frac{\sqrt2}{2}}{\firstdenum} \dif t - -2 \int \frac{-\sqrt2 + 2}{\firstdenum} \dif t\\[8pt] - &= - \int \frac{\dif \br{ \firstpoly }}{\firstpoly} \dif t - +2(\sqrt2 - 2) \frac{2}{\firstsqrt} \arctan \frac{2t - \sqrt2}{\firstsqrt}\\[8pt] - &= -\log{ \left|\firstpoly\right| } - - 4\arctan \frac{2t - \sqrt2}{\firstsqrt} + C_1 - \end{align*} - - \begin{align*} - \int \frac{2 t + 3 \sqrt2 + 4}{\secondpoly}\dif t - &= \int \frac{2t + 3\sqrt2 + 4}{\seconddenum} \dif t\\[8pt] - &= \int \frac{2t + \sqrt2}{\seconddenum} + - \int \frac{2\sqrt2 + 4}{\seconddenum}\\[8pt] - &= \log{ \left|\secondpoly\right| } + - 2(\sqrt2 + 2)\frac{2}{\secondsqrt} \arctan \frac{2t + \sqrt2}{\secondsqrt} + C_2\\[8pt] - &= \log{ \left|\secondpoly\right| } + - 4\arctan \frac{2t + \sqrt2}{\secondsqrt} + C_2 - \end{align*} - - \begin{align*} - \int \frac{(x + 3) \dif x}{(x^2 + 1)\sqrt{x^2 + x + 1}} - &= -\log{ \left|\firstpoly\right| } - - 4\arctan \frac{2t - \sqrt2}{\firstsqrt}\\[8pt] - & +\log{ \left|\secondpoly\right| } + - 4\arctan \frac{2t + \sqrt2}{\secondsqrt} + C\\[8pt] - \end{align*} - \renewcommand{\deft}{\br{\sqrt{x^2 + x + 1} - x}} - \begin{align*} - &= -\log{ \left|\firstpoly\right| } - - 4\arctan \frac{2\deft - \sqrt2}{\firstsqrt}\\[8pt] - & +\log{ \left|\secondpoly\right| } + - 4\arctan \frac{2\deft + \sqrt2}{\secondsqrt} + C - \end{align*} - -\clearpage -\question{17.c}{ - \[ - \int \frac{\dif x}{(x^3 - x)\sqrt{x^2 + x + 4}} - \] -} - \begin{gather*} - \sqrt{x^2 + x + 4} = x + t\\ - x^2 + x + 4 = x^2 + 2xt + t^2 - \end{gather*} - \begin{align*} - x &= \frac{t^2 - 4}{1 - 2t}\\ - \dif x &= -\frac{2(t^2 - t + 4)}{(1 - 2t)^2} \dif t\\ - x + t &= \frac{t^2 - t + 4}{2t - 1} - \end{align*} - - \medskip - - \renewcommand{\deft}{\sqrt{x^2 + x + 4} - x} - - \begin{align*} - \int \frac{\dif x}{(x^3 - x)\sqrt{x^2 + x + 4}} - &= \int \frac{\dif x}{x(x + 1)(x - 1)\sqrt{x^2 + x + 4}}\\[8pt] - &= -\int \frac{2(t^2 - t + 4) \dif t}{(1 - 2t)^2 x(x + 1)(x - 1)(x + t)}\\[8pt] - &= -2\int \frac{(t^2 - t + 4) \dif t}{ - (1 - 2t)^2 - \brac{t^2 - 4}{1 - 2t} - \brac{t^2 - 5 + 2t}{1 - 2t} - \brac{t^2 - 3 - 2t}{1 - 2t} - \brac{t^2 - t + 4}{2t - 1} - }\\[8pt] - &= 2 \int \frac{(1 - 2t)^2 \dif t}{ - (t^2 - 4)(t^2 + 2t - 5)(t^2 - 2t - 3) - }\\[8pt] - &= 2 \int \frac{(1 - 2t)^2 \dif t}{ - (t - 2)(t + 2)(t - \sqrt{6} + 1)(t + \sqrt{6} + 1)(t + 1)(t - 3) - }\\[8pt] - &= 2\int \br{ - -\frac{1}{t^2 - 4} - -\frac{1}{8(t + 1)} - +\frac{1}{8(t - 3)} - -\frac{1}{4\sqrt{6}(t + \sqrt{6} + 1)} - +\frac{1}{4\sqrt{6}(t - \sqrt{6} + 1)} - } \dif t\\[8pt] - &= -\arctan \frac{t}{2} - -\frac{1}{4}\log |t + 1| - +\frac{1}{4}\log |t - 3| - -\frac{1}{2\sqrt{6}}\log |t + \sqrt{6} + 1| - +\frac{1}{2\sqrt{6}}\log |t - \sqrt{6} + 1|\\[8pt] - &= -\arctan \frac{\deft}{2} - -\frac{1}{4}\log |\deft + 1| - +\frac{1}{4}\log |\deft - 3|\\[8pt] - &-\frac{1}{2\sqrt{6}}\log |\deft + \sqrt{6} + 1| - +\frac{1}{2\sqrt{6}}\log |\deft - \sqrt{6} + 1|\\[8pt] - \end{align*} - -\end{document} |