summaryrefslogtreecommitdiffstats
path: root/calc/sol0120.tex
diff options
context:
space:
mode:
Diffstat (limited to 'calc/sol0120.tex')
-rw-r--r--calc/sol0120.tex372
1 files changed, 372 insertions, 0 deletions
diff --git a/calc/sol0120.tex b/calc/sol0120.tex
new file mode 100644
index 0000000..f073973
--- /dev/null
+++ b/calc/sol0120.tex
@@ -0,0 +1,372 @@
+\documentclass[10pt,a5paper]{article}
+\usepackage[svgnames, rgb]{xcolor}
+
+\input{intro}
+
+\lhead{\color{gray} Шарафатдинов Камиль 192}
+\rhead{\color{gray} ДЗ к 27.01 (\texttt{sol0113 + sol0120})}
+\title{ДЗ на 27.01}
+\author{Шарафатдинов Камиль БПМИ-192}
+\date{билд: \today}
+
+
+% -- Here bet dragons --
+\begin{document}\thispagestyle{empty}
+
+\maketitle
+\clearpage
+\setcounter{page}{1}
+
+\question{Лемма 1}{
+ \[
+ \int \frac{dx}{x^s} = \frac{1}{(1 - s)x^{s - 1}} + C
+ \]
+}
+ \[
+ \ br{ \frac{1}{(1 - s)x^{s - 1}} + C }' =
+ -\frac{0 - (1 - s)(s - 2)x^{s - 2}}{(1 - s)^2 x^{2s - 2}} =
+ \frac{1}{x^s} \qed
+ \]
+
+\question{Лемма 2}{
+ \[
+ \int \frac{dx}{(x^2 + a^2)^2} = \frac{1}{2a^2} \ br{
+ \frac{x}{x^2 + a^2} + \frac{1}{a}\arctan\frac{x}{a}
+ } + C
+ \]
+}
+
+ \begin{align*}
+ \ br{
+ \frac{1}{2a^2} \ br{
+ \frac{x}{x^2 + a^2} + \frac{1}{a}\arctan\frac{x}{a}
+ }
+ }' =
+ \frac{1}{2a^2} \ br{
+ \frac{x^2 + a^2 - 2x^2}{(x^2 + a^2)^2} + \frac{1}{x^2 + a^2}
+ } =
+ \frac{1}{2a^2} \ br{
+ \frac{2a^2}{(x^2 + a^2)^2}
+ } =
+ \frac{1}{(x^2 + a^2)^2} \qed
+ \end{align*}
+
+\question{(seminar0113) 7.3}{
+ \[
+ \int \frac{dx}{x^4 + 4} = \frac{
+ \log | x^2 + 2x + 2 | + 2\arctan(x + 1) -
+ \log | x^2 - 2x + 2 | + 2\arctan(x - 1)
+ }{16} + \bar{C}
+ \]
+}
+
+ \[
+ x^4 + 4 = (x - (1 + i))(x - (i - 1))(x - (-i - 1))(x - (-i + 1)) =
+ (x^2 + 2x + 2)(x^2 - 2x + 2)
+ \]
+
+ \[
+ \frac{1}{x^4 + 4} = \frac{Ax + B}{x^2 + 2x + 2} + \frac{Cx + D}{x^2 - 2x + 2}
+ \]
+
+ \[
+ (Ax + B)(x^2 - 2x + 2) + (Cx + D)(x^2 + 2x + 2) \equiv 1
+ \]
+
+ С помощью давно забытой китайской техники решения систем уравнений получаем:
+ \[\begin{cases*}
+ A = \frac{1}{8}\\
+ B = \frac{1}{4}\\
+ C = -\frac{1}{8}\\
+ D = \frac{1}{4}\\
+ \end{cases*}\]
+
+ \[
+ \int \frac{1}{x^4 + 4} =
+ \frac{1}{8}\int \frac{x + 2}{x^2 + 2x + 2} dx +
+ \frac{1}{8}\int \frac{2 - x}{x^2 - 2x + 2} dx
+ \]
+
+ \begin{minipage}{0.45\textwidth}
+ \setlength{\jot}{16pt}
+ \begin{gather*}
+ \int \frac{x + 2}{x^2 + 2x + 2} dx =\\
+ \int \frac{x + 2}{(x + 1)^2 + 1} dx =\\
+ \int \frac{(x + 1) dx}{(x + 1)^2 + 1} + \int \frac{dx}{(x + 1)^2 + 1} =\\
+ =\begin{bmatrix} \frac{d(x^2 + 2x + 2)}{2} = (x + 1)dx \end{bmatrix} =\\
+ \int \frac{\frac{1}{2}d( (x + 1)^2 + 1 )}{(x + 1)^2 + 1} + \arctan(x + 1) =\\
+ = \frac{1}{2}\log | x^2 + 2x + 2 | + \arctan(x + 1) + C_1
+ \end{gather*}
+ \end{minipage}
+ \begin{minipage}{0.45\textwidth}
+ \begin{tabular}{|p{\textwidth}}
+ \setlength{\jot}{16pt}
+ \begin{gather*}
+ \int \frac{2 - x}{x^2 - 2x + 2} dx =\\
+ -\int \frac{x - 2}{(x - 1)^2 + 1} dx =\\
+ -\int \frac{(x - 1) dx}{(x - 1)^2 + 1} + \int \frac{dx}{(x - 1)^2 + 1} =\\
+ =\begin{bmatrix} \frac{d(x^2 - 2x + 2)}{2} = (x - 1)dx \end{bmatrix} =\\
+ -\int \frac{\frac{1}{2}d( (x - 1)^2 + 1 )}{(x - 1)^2 + 1} + \arctan(x - 1) =\\
+ = -\frac{1}{2}\log | x^2 - 2x + 2 | + \arctan(x - 1) + C_2
+ \end{gather*}
+ \end{tabular}
+ \end{minipage}
+
+ \begin{gather*}
+ \frac{1}{8}\int \frac{x + 2}{x^2 + 2x + 2} dx +
+ \frac{1}{8}\int \frac{2 - x}{x^2 - 2x + 2} dx =\\
+ =\frac{1}{16}\ br{
+ \log | x^2 + 2x + 2 | + 2\arctan(x + 1) -
+ \log | x^2 - 2x + 2 | + 2\arctan(x - 1)
+ } + \bar{C}
+ \end{gather*}
+
+\question{(seminar0113) 8.b}{
+ \[
+ \int \frac{x^5 - x}{x^8 + 1}dx = \frac{\sqrt{2}}{8} \ br{
+ \log |x^4 - \sqrt{2} x^2 + 1| - \log |x^4 + \sqrt{2} x^2 + 1|
+ } + \bar{C}
+ \]
+}
+
+ \[
+ \int \frac{x^5 - x}{x^8 + 1}dx =
+ \int \frac{x(x^4 - 1}{x^8 + 1}dx =
+ \begin{bmatrix}
+ u = x^2\\
+ dx = \frac{du}{2x}
+ \end{bmatrix} =
+ \int \frac{x(u^2 - 1)}{u^4 + 1}\frac{du}{2x} =
+ \frac{1}{2} \int \frac{u^2 - 1}{u^4 + 1} du
+ \]
+ \[
+ u^4 + 1 = \ br{u^2 + \sqrt{2} u + 1}\ br{u^2 - \sqrt{2} u + 1}
+ \]
+ \[
+ \frac{u^2 - 1}{u^4 + 1} =
+ \frac{Au + B}{u^2 + \sqrt{2} u + 1} +
+ \frac{Cu + D}{u^2 - \sqrt{2} u + 1}
+ \]
+
+ \[
+ (Au + B)(u^2 - \sqrt{2}u + 1) + (Cu + D)(u^2 + \sqrt{2}u + 1) \equiv u^2 - 1
+ \]
+
+ Все тем же китайским методом:
+ \[\begin{cases*}
+ A = -\frac{\sqrt{2}}{2}\\
+ B = -\frac{1}{2}\\
+ C = \frac{\sqrt{2}}{2}\\
+ D = -\frac{1}{2}\\
+ \end{cases*}\]
+
+ \newcommand{\invsq}{\frac{\sqrt{2}}{2}}
+ \[
+ \int \frac{u^2 - 1}{u^4 + 1} du =
+ \invsq \int \frac{-u - \invsq}{u^2 + \sqrt{2} u + 1} du +
+ \invsq \int \frac{u - \invsq}{u^2 - \sqrt{2} u + 1} du
+ \]
+
+ \begin{minipage}{0.45\textwidth}
+ \setlength{\jot}{16pt}
+ \begin{gather*}
+ \int \frac{-u - \invsq}{u^2 + \sqrt{2} u + 1} du =\\
+ -\int \frac{u + \invsq}{u^2 + \sqrt{2} u + 1} du =\\
+ -\frac{1}{2} \int \frac{d \ br{ u^2 + \sqrt{2} u + 1 }}{u^2 + \sqrt{2} u + 1} =\\
+ -\frac{1}{2} \log |u^2 + \sqrt{2} u + 1| + C_1
+ \end{gather*}
+ \end{minipage}
+ \begin{minipage}{0.45\textwidth}
+ \begin{tabular}{|p{\textwidth}}
+ \setlength{\jot}{16pt}
+ \begin{gather*}
+ \int \frac{u - \invsq}{u^2 - \sqrt{2} u + 1} du =\\
+ \int \frac{u + \invsq}{u^2 - \sqrt{2} u + 1} du =\\
+ \frac{1}{2} \int \frac{d \ br{ u^2 - \sqrt{2} u + 1 }}{u^2 - \sqrt{2} u + 1} =\\
+ \frac{1}{2} \log |u^2 - \sqrt{2} u + 1| + C_2
+ \end{gather*}
+ \end{tabular}
+ \end{minipage}
+
+ \[
+ \frac{1}{2} \int \frac{u^2 - 1}{u^4 + 1} du =
+ \frac{\sqrt{2}}{8} \ br{
+ \log |u^2 - \sqrt{2} u + 1| - \log |u^2 + \sqrt{2} u + 1|
+ } + C_3
+ \]
+
+ Обратно к $x$:
+ \[
+ \int \frac{x^5 - x}{x^8 + 1}dx =
+ \frac{\sqrt{2}}{8} \ br{
+ \log |x^4 - \sqrt{2} x^2 + 1| - \log |x^4 + \sqrt{2} x^2 + 1|
+ } + \bar{C}
+ \]
+
+\clearpage
+\question{(seminar0113) 13}{
+ \[
+ \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \ br{
+ -8 \log |x + 2| + 6 \log |x + 3| + \log (x^2 + 1) + 2\arctan x
+ } + \bar{C}
+ \]
+}
+ \[
+ \frac{x}{(x^2 + 1)(x + 2)(x + 3)} =
+ \frac{Ax + B}{x^2 + 1} + \frac{C}{x + 2} + \frac{D}{x + 3}
+ \]
+
+ \[
+ (Ax + B)(x + 2)(x + 3) + C(x^2 + 1)(x + 3) + D(x^2 + 1)(x + 2) \equiv x
+ \]
+ \[\begin{cases*}
+ A = 0.1\\
+ B = 0.1\\
+ C = -0.4\\
+ D = 0.3\\
+ \end{cases*}\]
+
+ \begin{gather*}
+ \int -\frac{2}{5} \frac{dx}{x + 2} = -\frac{2 \log |x + 2|}{5} + C_1\\[16pt]
+ \int \frac{3}{10} \frac{dx}{x + 3} = \frac{3 \log |x + 3|}{10} + C_2\\[16pt]
+ \int \frac{1}{10} \frac{(x + 1) dx}{x^2 + 1} =
+ \frac{1}{10} \ br{
+ \frac{1}{2}\int \frac{2x \ dx}{x^2 + 1} + \int \frac{dx}{x^2 + 1}
+ } =
+ \frac{1}{10} \ br{
+ \frac{1}{2} \log (x^2 + 1) + \arctan(x)
+ } + C_3
+ \end{gather*}
+
+ \[
+ \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \ br{
+ -8 \log |x + 2| + 6 \log |x + 3| + \log (x^2 + 1) + 2\arctan x
+ } + \bar{C}
+ \]
+
+\question{(seminar0120) 2.4}{
+ \[
+ \int \frac{dx}{x(x^2 + 1)^2} = -\frac{1}{2} \ br{
+ -\log (x^2 + 1) +
+ \frac{1}{x^2 + 1} +
+ 2\log |x|
+ } + \bar{C}
+ \]
+}
+
+ \[
+ \frac{1}{x(x^2 + 1)^2} =
+ \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{(x^2 + 1)^2} + \frac{E}{x}
+ \]
+
+ \[
+ (Ax + B)(x^2 + 1)x + (Cx + D)x + E(x^2 + 1)^2 \equiv 1
+ \]
+
+ \[\begin{cases*}
+ A = -1\\
+ B = 0\\
+ C = -1\\
+ D = 0\\
+ E = 1
+ \end{cases*}\]
+
+ \begin{gather*}
+ \int - \frac{x \ dx}{x^2 + 1} =
+ -\frac{1}{2} \int \frac{2x \ dx}{x^2 + 1} =
+ -\frac{1}{2} \log (x^2 + 1) + C_1\\[12pt]
+ \int - \frac{x \ dx}{(x^2 + 1)^2} =
+ -\frac{1}{2} \int \frac{2x \ dx}{(x^2 + 1)^2} =
+ \begin{bmatrix}
+ \displaystyle \int \frac{dx}{x^s} = \frac{1}{(1 - s)x^{s - 1}} + C
+ \end{bmatrix} =
+ \frac{1}{2(x^2 + 1)} + C_2\\[12pt]
+ \int \frac{dx}{x} = \log |x| + C_3
+ \end{gather*}
+
+ \[
+ \int \frac{dx}{x(x^2 + 1)^2} =
+ -\frac{1}{2} \log (x^2 + 1) +
+ \frac{1}{2(x^2 + 1)} +
+ \log |x| + \bar{C}
+ \]
+
+\question{(seminar0120) 11}{
+ \[
+ \int \frac{dx}{(x^3 + 1)^2}
+ \]
+}
+
+ \[
+ \frac{1}{(x^3 + 1)^2} = \frac{1}{(x + 1)^2(x^2 - x + 1)^2} =
+ \frac{A}{x + 1} + \frac{B}{(x + 1)^2} + \frac{Cx + D}{x^2 - x + 1} + \frac{Ex + F}{(x^2 - x + 1)^2}
+ \]
+
+ \[
+ A(x^2 - x + 1)^2(x + 1) +
+ B(x^2 - x + 1)^2 +
+ (Cx + D)(x + 1)^2(x^2 - x + 1) +
+ (Ex + F)(x + 1)^2 \equiv 1
+ \]
+ \[\begin{cases*}
+ A = 2/9\\
+ B = 1/9\\
+ C = -2/9, \ \
+ D = 1/3\\
+ E = -1/3, \ \
+ F = 1/3\\
+ \end{cases*}\]
+
+ \begin{align}
+ \int \frac{2dx}{9(x + 1)} &= \frac{2}{9} \log |x + 1| + C_1 &\\[8pt]
+ \int \frac{dx}{9(x + 1)^2} & = -\frac{1}{9(x + 1)} + C_2 &
+ \begin{bmatrix}
+ \text{Лемма 1}
+ \end{bmatrix}\\[8pt]
+ \int \frac{-2x + 3}{9(x^2 - x + 1)}dx &=
+ -\frac{1}{9} \ br{
+ \int \frac{(2x - 1) dx}{x^2 - x + 1} -
+ \int \frac{2 dx}{\ br{ x - \frac{1}{2} }^2 + \frac{3}{4}}
+ }\nonumber \\[8pt]
+ &=
+ -\frac{1}{9} \ br{
+ \log (x^2 - x + 1) -
+ \frac{4}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}}
+ } + C_3\\[8pt]
+ \frac{1}{3} \int \frac{(1 - x)dx}{(x^2 - x + 1)^2} &=
+ -\frac{1}{6} \ br{
+ \int \frac{(2x - 1)dx}{(x^2 - x + 1)^2} -
+ \int \frac{dx}{\ br{ \ br{ x - \frac{1}{2} }^2 + \frac{3}{4} }^2}
+ }\nonumber \\[8pt]
+ &=
+ -\frac{1}{6} \ br{
+ -\frac{1}{x^2 - x + 1} +
+ \frac{2}{3} \ br{
+ \frac{x}{x^2 - x + 1} +
+ \frac{2}{\sqrt{3}} \arctan\frac{2x - 1}{\sqrt{3}}
+ }
+ } + C_4
+ &\begin{bmatrix}
+ \text{Лемма 1 на левую часть}\\
+ \text{Лемма 2 на правую часть}
+ \end{bmatrix}
+ \nonumber \\[8pt]
+ &= \frac{1}{9} \ br{
+ \frac{2x - 1}{x^2 - x + 1} -
+ \frac{2}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}}
+ } + C_4
+ \end{align}
+
+ \begin{gather*}
+ \int \frac{1}{(x^3 + 1)^2} =
+ \int \frac{2dx}{9(x + 1)} +
+ \int \frac{dx}{9(x + 1)^2} +
+ \int \frac{-2x + 3}{9(x^2 - x + 1)}dx +
+ \frac{1}{3} \int \frac{(1 - x)dx}{(x^2 - x + 1)^2} =\\[16pt]
+ \frac{1}{9} \ br{
+ 2\log |x + 1| - \frac{1}{x + 1}
+ - \log(x^2 - x + 1) + \frac{4}{\sqrt{3}}\arctan \frac{2x - 1}{\sqrt{3}}
+ - \frac{2x - 1}{x^2 - x + 1} - \frac{2}{\sqrt{3}}\arctan\frac{2x - 1}{\sqrt{3}}
+ } + C
+ \end{gather*}
+\end{document} \ No newline at end of file