blob: bb4ad94890c121ace7d2d53a3b67b9f838f03c2b (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
\documentclass[10pt,a5paper]{article}
\usepackage[svgnames, rgb]{xcolor}
\input{intro}
\lhead{\color{gray} Шарафатдинов Камиль 192}
\rhead{\color{gray} \texttt{sol0203}}
\title{ДЗ на 10.02}
\author{Шарафатдинов Камиль БПМИ-192}
\date{билд: \today}
% -- Here bet dragons --
\begin{document}\thispagestyle{empty}
\maketitle
\clearpage
\setcounter{page}{1}
\question{1.f}{
\[
\int_1^e \sin \log x \dif x
\]
}
\begingroup
\setlength{\jot}{8pt}
\begin{align*}
I = \int \sin \log \dif x
&= \int e^u \sin u \dif u
&\explain{
\displaystyle u = \log x\\
\displaystyle \dif u = \frac{\dif x}{x} = \frac{\dif x}{e^u}
}\\
&= - e^u \cos u + \int e^u \cos u \dif u\\
&= - e^u \cos u + e^u \sin u - \int e^u \sin u \dif u
\end{align*}
\endgroup
\begin{flalign*}
2I = e^u (\sin u - \cos u) + C\\
I = \frac{e^u}{2} (\sin u - \cos u) + C =
\frac{x}{2} (\sin \log x - \cos \log x) + C
\end{flalign*}
\[
\int_1^e \sin \log x \dif x =
\frac{e}{2} (\sin 1 - \cos 1) - \frac{1}{2} (0 - 1) =
\frac{e}{2} (\sin 1 - \cos 1) + \frac{1}{2}
\]
\vspace*{\fill}
P.S. Ну проверь хотя бы одну задачу, пожаааалуйста
\end{document}
|