summaryrefslogtreecommitdiffstats
path: root/sol0210.tex
blob: bb4ad94890c121ace7d2d53a3b67b9f838f03c2b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
\documentclass[10pt,a5paper]{article}
\usepackage[svgnames, rgb]{xcolor}

\input{intro}

\lhead{\color{gray} Шарафатдинов Камиль 192}
\rhead{\color{gray} \texttt{sol0203}}
\title{ДЗ на 10.02}
\author{Шарафатдинов Камиль БПМИ-192}
\date{билд: \today}


% -- Here bet  dragons --
\begin{document}\thispagestyle{empty}

\maketitle
\clearpage
\setcounter{page}{1}

\question{1.f}{
    \[
        \int_1^e \sin \log x \dif x
    \]
}
    
    \begingroup
    \setlength{\jot}{8pt}
    \begin{align*}
        I = \int \sin \log \dif x
            &= \int e^u \sin u \dif u
                &\explain{
                    \displaystyle u = \log x\\
                    \displaystyle \dif u = \frac{\dif x}{x} = \frac{\dif x}{e^u}
                }\\
            &= - e^u \cos u + \int e^u \cos u \dif u\\
            &= - e^u \cos u + e^u \sin u - \int e^u \sin u \dif u
    \end{align*}
    \endgroup

    \begin{flalign*}
        2I = e^u (\sin u - \cos u) + C\\
        I = \frac{e^u}{2} (\sin u - \cos u) + C =
            \frac{x}{2} (\sin \log x - \cos \log x) + C
    \end{flalign*}

    \[
        \int_1^e \sin \log x \dif x =
        \frac{e}{2} (\sin 1 - \cos 1) - \frac{1}{2} (0 - 1) =
        \frac{e}{2} (\sin 1 - \cos 1) + \frac{1}{2}
    \]

\vspace*{\fill}

    P.S. Ну проверь хотя бы одну задачу, пожаааалуйста

\end{document}