summaryrefslogtreecommitdiffstats
path: root/calc
diff options
context:
space:
mode:
authorsyn <isaqtm@gmail.com>2020-04-15 04:35:30 +0300
committersyn <isaqtm@gmail.com>2020-04-15 04:35:30 +0300
commitf642380d55c66e4e5deaaa6c7cef15f6dbfe36c6 (patch)
tree31ed9377de27678b376668131e0cbf8a8639ce16 /calc
parent406cd62e6c18587b2859bf77434527f2ac87027d (diff)
downloadtex2-f642380d55c66e4e5deaaa6c7cef15f6dbfe36c6.tar.gz
Reorganize & alg-1
Diffstat (limited to 'calc')
-rw-r--r--calc/sol0113.tex22
-rw-r--r--calc/sol0120.tex372
-rw-r--r--calc/sol0127.tex268
-rw-r--r--calc/sol0203.tex282
-rw-r--r--calc/sol0210.tex56
5 files changed, 1000 insertions, 0 deletions
diff --git a/calc/sol0113.tex b/calc/sol0113.tex
new file mode 100644
index 0000000..06ac8d6
--- /dev/null
+++ b/calc/sol0113.tex
@@ -0,0 +1,22 @@
+\documentclass[10pt,a5paper]{article}
+\usepackage[svgnames, rgb]{xcolor}
+
+\input{intro}
+
+\lhead{\color{gray} Шарафатдинов Камиль 192}
+\rhead{\color{gray} ДЗ к 27.01 (\texttt{sol0113 + sol0120})}
+\title{ДЗ на 27.01}
+\author{Шарафатдинов Камиль БПМИ-192}
+\date{билд: \today}
+
+
+% -- Here bet dragons --
+\begin{document}\thispagestyle{empty}
+
+\maketitle
+\clearpage
+\setcounter{page}{1}
+\[
+ \abs{\frac{1}{2}}
+\]
+\end{document}
diff --git a/calc/sol0120.tex b/calc/sol0120.tex
new file mode 100644
index 0000000..f073973
--- /dev/null
+++ b/calc/sol0120.tex
@@ -0,0 +1,372 @@
+\documentclass[10pt,a5paper]{article}
+\usepackage[svgnames, rgb]{xcolor}
+
+\input{intro}
+
+\lhead{\color{gray} Шарафатдинов Камиль 192}
+\rhead{\color{gray} ДЗ к 27.01 (\texttt{sol0113 + sol0120})}
+\title{ДЗ на 27.01}
+\author{Шарафатдинов Камиль БПМИ-192}
+\date{билд: \today}
+
+
+% -- Here bet dragons --
+\begin{document}\thispagestyle{empty}
+
+\maketitle
+\clearpage
+\setcounter{page}{1}
+
+\question{Лемма 1}{
+ \[
+ \int \frac{dx}{x^s} = \frac{1}{(1 - s)x^{s - 1}} + C
+ \]
+}
+ \[
+ \ br{ \frac{1}{(1 - s)x^{s - 1}} + C }' =
+ -\frac{0 - (1 - s)(s - 2)x^{s - 2}}{(1 - s)^2 x^{2s - 2}} =
+ \frac{1}{x^s} \qed
+ \]
+
+\question{Лемма 2}{
+ \[
+ \int \frac{dx}{(x^2 + a^2)^2} = \frac{1}{2a^2} \ br{
+ \frac{x}{x^2 + a^2} + \frac{1}{a}\arctan\frac{x}{a}
+ } + C
+ \]
+}
+
+ \begin{align*}
+ \ br{
+ \frac{1}{2a^2} \ br{
+ \frac{x}{x^2 + a^2} + \frac{1}{a}\arctan\frac{x}{a}
+ }
+ }' =
+ \frac{1}{2a^2} \ br{
+ \frac{x^2 + a^2 - 2x^2}{(x^2 + a^2)^2} + \frac{1}{x^2 + a^2}
+ } =
+ \frac{1}{2a^2} \ br{
+ \frac{2a^2}{(x^2 + a^2)^2}
+ } =
+ \frac{1}{(x^2 + a^2)^2} \qed
+ \end{align*}
+
+\question{(seminar0113) 7.3}{
+ \[
+ \int \frac{dx}{x^4 + 4} = \frac{
+ \log | x^2 + 2x + 2 | + 2\arctan(x + 1) -
+ \log | x^2 - 2x + 2 | + 2\arctan(x - 1)
+ }{16} + \bar{C}
+ \]
+}
+
+ \[
+ x^4 + 4 = (x - (1 + i))(x - (i - 1))(x - (-i - 1))(x - (-i + 1)) =
+ (x^2 + 2x + 2)(x^2 - 2x + 2)
+ \]
+
+ \[
+ \frac{1}{x^4 + 4} = \frac{Ax + B}{x^2 + 2x + 2} + \frac{Cx + D}{x^2 - 2x + 2}
+ \]
+
+ \[
+ (Ax + B)(x^2 - 2x + 2) + (Cx + D)(x^2 + 2x + 2) \equiv 1
+ \]
+
+ С помощью давно забытой китайской техники решения систем уравнений получаем:
+ \[\begin{cases*}
+ A = \frac{1}{8}\\
+ B = \frac{1}{4}\\
+ C = -\frac{1}{8}\\
+ D = \frac{1}{4}\\
+ \end{cases*}\]
+
+ \[
+ \int \frac{1}{x^4 + 4} =
+ \frac{1}{8}\int \frac{x + 2}{x^2 + 2x + 2} dx +
+ \frac{1}{8}\int \frac{2 - x}{x^2 - 2x + 2} dx
+ \]
+
+ \begin{minipage}{0.45\textwidth}
+ \setlength{\jot}{16pt}
+ \begin{gather*}
+ \int \frac{x + 2}{x^2 + 2x + 2} dx =\\
+ \int \frac{x + 2}{(x + 1)^2 + 1} dx =\\
+ \int \frac{(x + 1) dx}{(x + 1)^2 + 1} + \int \frac{dx}{(x + 1)^2 + 1} =\\
+ =\begin{bmatrix} \frac{d(x^2 + 2x + 2)}{2} = (x + 1)dx \end{bmatrix} =\\
+ \int \frac{\frac{1}{2}d( (x + 1)^2 + 1 )}{(x + 1)^2 + 1} + \arctan(x + 1) =\\
+ = \frac{1}{2}\log | x^2 + 2x + 2 | + \arctan(x + 1) + C_1
+ \end{gather*}
+ \end{minipage}
+ \begin{minipage}{0.45\textwidth}
+ \begin{tabular}{|p{\textwidth}}
+ \setlength{\jot}{16pt}
+ \begin{gather*}
+ \int \frac{2 - x}{x^2 - 2x + 2} dx =\\
+ -\int \frac{x - 2}{(x - 1)^2 + 1} dx =\\
+ -\int \frac{(x - 1) dx}{(x - 1)^2 + 1} + \int \frac{dx}{(x - 1)^2 + 1} =\\
+ =\begin{bmatrix} \frac{d(x^2 - 2x + 2)}{2} = (x - 1)dx \end{bmatrix} =\\
+ -\int \frac{\frac{1}{2}d( (x - 1)^2 + 1 )}{(x - 1)^2 + 1} + \arctan(x - 1) =\\
+ = -\frac{1}{2}\log | x^2 - 2x + 2 | + \arctan(x - 1) + C_2
+ \end{gather*}
+ \end{tabular}
+ \end{minipage}
+
+ \begin{gather*}
+ \frac{1}{8}\int \frac{x + 2}{x^2 + 2x + 2} dx +
+ \frac{1}{8}\int \frac{2 - x}{x^2 - 2x + 2} dx =\\
+ =\frac{1}{16}\ br{
+ \log | x^2 + 2x + 2 | + 2\arctan(x + 1) -
+ \log | x^2 - 2x + 2 | + 2\arctan(x - 1)
+ } + \bar{C}
+ \end{gather*}
+
+\question{(seminar0113) 8.b}{
+ \[
+ \int \frac{x^5 - x}{x^8 + 1}dx = \frac{\sqrt{2}}{8} \ br{
+ \log |x^4 - \sqrt{2} x^2 + 1| - \log |x^4 + \sqrt{2} x^2 + 1|
+ } + \bar{C}
+ \]
+}
+
+ \[
+ \int \frac{x^5 - x}{x^8 + 1}dx =
+ \int \frac{x(x^4 - 1}{x^8 + 1}dx =
+ \begin{bmatrix}
+ u = x^2\\
+ dx = \frac{du}{2x}
+ \end{bmatrix} =
+ \int \frac{x(u^2 - 1)}{u^4 + 1}\frac{du}{2x} =
+ \frac{1}{2} \int \frac{u^2 - 1}{u^4 + 1} du
+ \]
+ \[
+ u^4 + 1 = \ br{u^2 + \sqrt{2} u + 1}\ br{u^2 - \sqrt{2} u + 1}
+ \]
+ \[
+ \frac{u^2 - 1}{u^4 + 1} =
+ \frac{Au + B}{u^2 + \sqrt{2} u + 1} +
+ \frac{Cu + D}{u^2 - \sqrt{2} u + 1}
+ \]
+
+ \[
+ (Au + B)(u^2 - \sqrt{2}u + 1) + (Cu + D)(u^2 + \sqrt{2}u + 1) \equiv u^2 - 1
+ \]
+
+ Все тем же китайским методом:
+ \[\begin{cases*}
+ A = -\frac{\sqrt{2}}{2}\\
+ B = -\frac{1}{2}\\
+ C = \frac{\sqrt{2}}{2}\\
+ D = -\frac{1}{2}\\
+ \end{cases*}\]
+
+ \newcommand{\invsq}{\frac{\sqrt{2}}{2}}
+ \[
+ \int \frac{u^2 - 1}{u^4 + 1} du =
+ \invsq \int \frac{-u - \invsq}{u^2 + \sqrt{2} u + 1} du +
+ \invsq \int \frac{u - \invsq}{u^2 - \sqrt{2} u + 1} du
+ \]
+
+ \begin{minipage}{0.45\textwidth}
+ \setlength{\jot}{16pt}
+ \begin{gather*}
+ \int \frac{-u - \invsq}{u^2 + \sqrt{2} u + 1} du =\\
+ -\int \frac{u + \invsq}{u^2 + \sqrt{2} u + 1} du =\\
+ -\frac{1}{2} \int \frac{d \ br{ u^2 + \sqrt{2} u + 1 }}{u^2 + \sqrt{2} u + 1} =\\
+ -\frac{1}{2} \log |u^2 + \sqrt{2} u + 1| + C_1
+ \end{gather*}
+ \end{minipage}
+ \begin{minipage}{0.45\textwidth}
+ \begin{tabular}{|p{\textwidth}}
+ \setlength{\jot}{16pt}
+ \begin{gather*}
+ \int \frac{u - \invsq}{u^2 - \sqrt{2} u + 1} du =\\
+ \int \frac{u + \invsq}{u^2 - \sqrt{2} u + 1} du =\\
+ \frac{1}{2} \int \frac{d \ br{ u^2 - \sqrt{2} u + 1 }}{u^2 - \sqrt{2} u + 1} =\\
+ \frac{1}{2} \log |u^2 - \sqrt{2} u + 1| + C_2
+ \end{gather*}
+ \end{tabular}
+ \end{minipage}
+
+ \[
+ \frac{1}{2} \int \frac{u^2 - 1}{u^4 + 1} du =
+ \frac{\sqrt{2}}{8} \ br{
+ \log |u^2 - \sqrt{2} u + 1| - \log |u^2 + \sqrt{2} u + 1|
+ } + C_3
+ \]
+
+ Обратно к $x$:
+ \[
+ \int \frac{x^5 - x}{x^8 + 1}dx =
+ \frac{\sqrt{2}}{8} \ br{
+ \log |x^4 - \sqrt{2} x^2 + 1| - \log |x^4 + \sqrt{2} x^2 + 1|
+ } + \bar{C}
+ \]
+
+\clearpage
+\question{(seminar0113) 13}{
+ \[
+ \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \ br{
+ -8 \log |x + 2| + 6 \log |x + 3| + \log (x^2 + 1) + 2\arctan x
+ } + \bar{C}
+ \]
+}
+ \[
+ \frac{x}{(x^2 + 1)(x + 2)(x + 3)} =
+ \frac{Ax + B}{x^2 + 1} + \frac{C}{x + 2} + \frac{D}{x + 3}
+ \]
+
+ \[
+ (Ax + B)(x + 2)(x + 3) + C(x^2 + 1)(x + 3) + D(x^2 + 1)(x + 2) \equiv x
+ \]
+ \[\begin{cases*}
+ A = 0.1\\
+ B = 0.1\\
+ C = -0.4\\
+ D = 0.3\\
+ \end{cases*}\]
+
+ \begin{gather*}
+ \int -\frac{2}{5} \frac{dx}{x + 2} = -\frac{2 \log |x + 2|}{5} + C_1\\[16pt]
+ \int \frac{3}{10} \frac{dx}{x + 3} = \frac{3 \log |x + 3|}{10} + C_2\\[16pt]
+ \int \frac{1}{10} \frac{(x + 1) dx}{x^2 + 1} =
+ \frac{1}{10} \ br{
+ \frac{1}{2}\int \frac{2x \ dx}{x^2 + 1} + \int \frac{dx}{x^2 + 1}
+ } =
+ \frac{1}{10} \ br{
+ \frac{1}{2} \log (x^2 + 1) + \arctan(x)
+ } + C_3
+ \end{gather*}
+
+ \[
+ \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \ br{
+ -8 \log |x + 2| + 6 \log |x + 3| + \log (x^2 + 1) + 2\arctan x
+ } + \bar{C}
+ \]
+
+\question{(seminar0120) 2.4}{
+ \[
+ \int \frac{dx}{x(x^2 + 1)^2} = -\frac{1}{2} \ br{
+ -\log (x^2 + 1) +
+ \frac{1}{x^2 + 1} +
+ 2\log |x|
+ } + \bar{C}
+ \]
+}
+
+ \[
+ \frac{1}{x(x^2 + 1)^2} =
+ \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{(x^2 + 1)^2} + \frac{E}{x}
+ \]
+
+ \[
+ (Ax + B)(x^2 + 1)x + (Cx + D)x + E(x^2 + 1)^2 \equiv 1
+ \]
+
+ \[\begin{cases*}
+ A = -1\\
+ B = 0\\
+ C = -1\\
+ D = 0\\
+ E = 1
+ \end{cases*}\]
+
+ \begin{gather*}
+ \int - \frac{x \ dx}{x^2 + 1} =
+ -\frac{1}{2} \int \frac{2x \ dx}{x^2 + 1} =
+ -\frac{1}{2} \log (x^2 + 1) + C_1\\[12pt]
+ \int - \frac{x \ dx}{(x^2 + 1)^2} =
+ -\frac{1}{2} \int \frac{2x \ dx}{(x^2 + 1)^2} =
+ \begin{bmatrix}
+ \displaystyle \int \frac{dx}{x^s} = \frac{1}{(1 - s)x^{s - 1}} + C
+ \end{bmatrix} =
+ \frac{1}{2(x^2 + 1)} + C_2\\[12pt]
+ \int \frac{dx}{x} = \log |x| + C_3
+ \end{gather*}
+
+ \[
+ \int \frac{dx}{x(x^2 + 1)^2} =
+ -\frac{1}{2} \log (x^2 + 1) +
+ \frac{1}{2(x^2 + 1)} +
+ \log |x| + \bar{C}
+ \]
+
+\question{(seminar0120) 11}{
+ \[
+ \int \frac{dx}{(x^3 + 1)^2}
+ \]
+}
+
+ \[
+ \frac{1}{(x^3 + 1)^2} = \frac{1}{(x + 1)^2(x^2 - x + 1)^2} =
+ \frac{A}{x + 1} + \frac{B}{(x + 1)^2} + \frac{Cx + D}{x^2 - x + 1} + \frac{Ex + F}{(x^2 - x + 1)^2}
+ \]
+
+ \[
+ A(x^2 - x + 1)^2(x + 1) +
+ B(x^2 - x + 1)^2 +
+ (Cx + D)(x + 1)^2(x^2 - x + 1) +
+ (Ex + F)(x + 1)^2 \equiv 1
+ \]
+ \[\begin{cases*}
+ A = 2/9\\
+ B = 1/9\\
+ C = -2/9, \ \
+ D = 1/3\\
+ E = -1/3, \ \
+ F = 1/3\\
+ \end{cases*}\]
+
+ \begin{align}
+ \int \frac{2dx}{9(x + 1)} &= \frac{2}{9} \log |x + 1| + C_1 &\\[8pt]
+ \int \frac{dx}{9(x + 1)^2} & = -\frac{1}{9(x + 1)} + C_2 &
+ \begin{bmatrix}
+ \text{Лемма 1}
+ \end{bmatrix}\\[8pt]
+ \int \frac{-2x + 3}{9(x^2 - x + 1)}dx &=
+ -\frac{1}{9} \ br{
+ \int \frac{(2x - 1) dx}{x^2 - x + 1} -
+ \int \frac{2 dx}{\ br{ x - \frac{1}{2} }^2 + \frac{3}{4}}
+ }\nonumber \\[8pt]
+ &=
+ -\frac{1}{9} \ br{
+ \log (x^2 - x + 1) -
+ \frac{4}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}}
+ } + C_3\\[8pt]
+ \frac{1}{3} \int \frac{(1 - x)dx}{(x^2 - x + 1)^2} &=
+ -\frac{1}{6} \ br{
+ \int \frac{(2x - 1)dx}{(x^2 - x + 1)^2} -
+ \int \frac{dx}{\ br{ \ br{ x - \frac{1}{2} }^2 + \frac{3}{4} }^2}
+ }\nonumber \\[8pt]
+ &=
+ -\frac{1}{6} \ br{
+ -\frac{1}{x^2 - x + 1} +
+ \frac{2}{3} \ br{
+ \frac{x}{x^2 - x + 1} +
+ \frac{2}{\sqrt{3}} \arctan\frac{2x - 1}{\sqrt{3}}
+ }
+ } + C_4
+ &\begin{bmatrix}
+ \text{Лемма 1 на левую часть}\\
+ \text{Лемма 2 на правую часть}
+ \end{bmatrix}
+ \nonumber \\[8pt]
+ &= \frac{1}{9} \ br{
+ \frac{2x - 1}{x^2 - x + 1} -
+ \frac{2}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}}
+ } + C_4
+ \end{align}
+
+ \begin{gather*}
+ \int \frac{1}{(x^3 + 1)^2} =
+ \int \frac{2dx}{9(x + 1)} +
+ \int \frac{dx}{9(x + 1)^2} +
+ \int \frac{-2x + 3}{9(x^2 - x + 1)}dx +
+ \frac{1}{3} \int \frac{(1 - x)dx}{(x^2 - x + 1)^2} =\\[16pt]
+ \frac{1}{9} \ br{
+ 2\log |x + 1| - \frac{1}{x + 1}
+ - \log(x^2 - x + 1) + \frac{4}{\sqrt{3}}\arctan \frac{2x - 1}{\sqrt{3}}
+ - \frac{2x - 1}{x^2 - x + 1} - \frac{2}{\sqrt{3}}\arctan\frac{2x - 1}{\sqrt{3}}
+ } + C
+ \end{gather*}
+\end{document} \ No newline at end of file
diff --git a/calc/sol0127.tex b/calc/sol0127.tex
new file mode 100644
index 0000000..1098687
--- /dev/null
+++ b/calc/sol0127.tex
@@ -0,0 +1,268 @@
+\documentclass[10pt,a5paper]{article}
+\usepackage[svgnames, rgb]{xcolor}
+
+\input{intro}
+
+\lhead{\color{gray} Шарафатдинов Камиль 192}
+\rhead{\color{gray} \texttt{sol0127}}
+\title{ДЗ на 03.02}
+\author{Шарафатдинов Камиль БПМИ-192}
+\date{билд: \today}
+
+
+% -- Here bet dragons --
+\begin{document}\thispagestyle{empty}
+
+\maketitle
+\clearpage
+\setcounter{page}{1}
+
+%\question{8.a}{
+% \[
+% \int \frac{2\sin^3 x + \cos^2 x \sin 2x}{\sin^4 x + 3 \cos^4 x} \dif x = \todo + C
+% \]
+%}
+
+
+
+\question{8.c}{
+ \[
+ \int \frac{\dif x}{\cosh^3 x + 3\cosh x} = \frac{
+ 2\arctan \sinh x - \arctan \frac{\sinh x}{2}
+ }{6} + C
+ \]
+}
+ \begin{align*}
+ \int \frac{\dif x}{\cosh^3 x + 3\cosh x}
+ &= \int \frac{\frac{\dif \sinh x}{\cosh x}}{\cosh^3 x + 3\cosh x}
+ &\explain{
+ \dif \sinh x = \cosh x \dif x
+ } \\[8pt]
+ &= \int \frac{\dif \sinh x}{\cosh^4 x + 3\cosh^2 x} \\[8pt]
+ &= \int \frac{\dif \sinh x}{\br{ 1 + \sinh^2 x }^2 + 3\br {1 + \sinh^2 x}}
+ &\explain{
+ \cosh^2 x - \sinh^2 x = 1
+ } \\[8pt]
+ &= \int \frac{\dif u}{\br{ 1 + u^2 }^2 + 3\br {1 + u^2}}
+ &\explain{
+ u = \sinh x
+ } \\[8pt]
+ &= \int \frac{\dif u}{4 + 5u^2 + u^4} \\[8pt]
+ &= \int \frac{\dif u}{\br{ u^2 + 1 } \br{ u^2 + 4 }} \\[8pt]
+ &= \int \frac{\dif u}{3} \br{
+ \frac{1}{ u^2 + 1 } - \frac{1}{ u^2 + 4 }
+ } \\[8pt]
+ &= \frac{1}{3} \br{
+ \int \frac{du}{u^2 + 1} - \int \frac{du}{u^2 + 4}
+ } \\[8pt]
+ &= \frac{1}{3} \br{
+ \arctan u - \frac{1}{2}\arctan \frac{u}{2}
+ } + C
+ &\explain{
+ u = \sinh x
+ }\\[8pt]
+ &= \frac{1}{6} \br{
+ 2\arctan \sinh x - \arctan \frac{\sinh x}{2}
+ } + C
+ \end{align*}
+
+\clearpage
+\question{8.e}{
+ \[
+ \int \frac{\dif x}{\sin^4 x + \cos^4 x} = \frac{\sqrt{2}}{2} \br{
+ \arctan \br{ \sqrt{2} \tan x + 1 } + \arctan \br{ \sqrt{2} \tan x - 1 }
+ } + C
+ \]
+}
+
+ \[
+ \sin^4 x + \cos^4 x =
+ \br{ 1 - \cos^2 x }^2 + \cos^4 x =
+ 1 - 2\cos^2 x + 2\cos^4 x
+ \]
+ \[
+ \dif x = \cos^2 x \dif\ (\tan x)
+ \]
+ \[
+ 1 + \tan^2 x = \frac{1}{\cos^2 x}
+ \]
+
+ \begin{align*}
+ \int \frac{\dif x}{\sin^4 x + \cos^4 x}
+ &= \int \frac{\cos^2 x \dif\ (\tan x)}{1 - 2\cos^2 x + 2\cos^4 x} \\[8pt]
+ &= \int \frac{\dif\ (\tan x)}{\frac{1}{\cos^2 x} - 2 + 2\cos^2 x} \\[8pt]
+ &= \int \frac{\dif\ (\tan x)}{1 + \tan^2 x - 2 + \frac{2}{1 + \tan^2 x}} \\[8pt]
+ &= \int \frac{\dif u}{-1 + u^2 + \frac{2}{1 + u^2}} & [u = \tan x]\\[8pt]
+ &= \int \frac{(1 + u^2) \dif u}{u^4 + 1} \\[8pt]
+ \end{align*}
+
+ По прошлой домашке мы знаем, что
+ \[
+ x^4 + 1 = (x^2 - \sqrt{2} x + 1)(x^2 + \sqrt{2} x + 1)
+ \]
+
+ Разложим на слагаемые:
+ \[
+ \frac{x^2 + 1}{x^4 + 1} =
+ \frac{1}{2} \br{ \frac{1}{x^2 + \sqrt{2} x + 1} + \frac{1}{x^2 - \sqrt{2} + 1} }
+ \]
+
+ \begin{align*}
+ \int \frac{1}{u^2 + \sqrt{2} u + 1}\dif u
+ &= \int \frac{1}{\br{ u + \frac{\sqrt{2}}{2} }^2 + \frac{1}{2}}\dif u \\[8pt]
+ &= \sqrt{2} \arctan \br{ \sqrt{2} u + 1 } + C_1 \\[16pt]
+ \int \frac{1}{u^2 - \sqrt{2} u + 1}\dif u
+ &= \int \frac{1}{\br{ u - \frac{\sqrt{2}}{2} }^2 + \frac{1}{2}}\dif u \\[8pt]
+ &= \sqrt{2} \arctan \br{ \sqrt{2} u - 1 } + C_2 \\[8pt]
+ \end{align*}
+
+ \begin{gather*}
+ \int \frac{\dif x}{\sin^4 x + \cos^4 x} =
+ \int \frac{(\tan^2 x + 1) \dif\ \tan x}{\tan^4 x + 1} =\\[8pt] =
+ \frac{\sqrt{2}}{2} \br{
+ \arctan \br{ \sqrt{2} \tan x + 1 } + \arctan \br{ \sqrt{2} \tan x - 1 }
+ } + C
+ \end{gather*}
+
+\question{8.g}{
+ \[
+ \int \frac{\dif x}{a \sin x + b \cos x + c}, \qquad c > \sqrt{a^2 + b^2}
+ \]
+}
+
+ Найдем такой интеграл в предположении $a > 1$:
+
+ \begin{align*}
+ \int \frac{\dif x}{\sin x + a}
+ &= \int \frac{\frac{2 \dif u}{1 + u^2}}{\frac{2u}{1 + u^2} + a}
+ &\explain{
+ \displaystyle u = \tan \frac{x}{2}\\[8pt]
+ \displaystyle \dif x = \frac{2 \dif u}{1 + u^2}\\[8pt]
+ \displaystyle \sin x = \frac{2u}{1 + u^2}
+ } \\[8pt]
+ &= \int \frac{2\dif u}{2u + a + au^2} \\[8pt]
+ &= \int \frac{2\dif u}
+ {\br{ \sqrt{a} u + \frac{1}{\sqrt{a}} }^2 + 1 - \frac{1}{a}} \\[8pt]
+ &= \int \frac{2\dif u}
+ {\br{ \sqrt{a} u + \frac{1}{\sqrt{a}} }^2 + \frac{a^2 - 1}{a}} \\[8pt]
+ &= \frac{2}{\sqrt{a}}\int \frac{\dif v}{v^2 + \frac{a^2 - 1}{a}}
+ &\explain{
+ v = \sqrt{a} u + \frac{1}{\sqrt{a}}\\
+ \dif v = \sqrt{a} \dif u
+ } \\[8pt]
+ &= \frac{2\sqrt{a}}{\sqrt{a}\sqrt{a^2 - 1}}
+ \arctan \br{ \frac{\sqrt{a} v}{\sqrt{a^2 - 1}} } + C \\[8pt]
+ &= \frac{2}{\sqrt{a^2 - 1}}
+ \arctan \br{ \frac{\sqrt{a} v}{\sqrt{a^2 - 1}} } + C \\[8pt]
+ &= \frac{2}{\sqrt{a^2 - 1}}
+ \arctan \br{ \frac{au + 1}{\sqrt{a^2 - 1}} } + C
+ &\explain{
+ v = \sqrt{a} u + \frac{1}{\sqrt{a}}
+ } \\[8pt]
+ &= \frac{2}{\sqrt{a^2 - 1}}
+ \arctan \br{ \frac{a \tan \frac{x}{2} + 1}{\sqrt{a^2 - 1}} } + C
+ \end{align*}
+
+ Теперь, непосредственно задание
+
+ \begin{align*}
+ \int \frac{\dif x}{a \sin x + b \cos x + c}
+ &= \int \frac{\dif x}{r \br{ \frac{a}{r} \sin x + \frac{b}{r} \cos x} + c }
+ &\explain{
+ \displaystyle r = \sqrt{a^2 + b^2}
+ } \\[8pt]
+ &= \frac{1}{r} \int \frac{\dif x}{\cos \phi \sin x + \sin \phi \cos x + c/r}
+ &\explain{
+ \displaystyle \phi = \arccos \frac{a}{r} = \arcsin \frac{b}{r}
+ } \\[8pt]
+ &= \frac{1}{r} \int \frac{\dif x}{\sin \br{ \phi + x } + c/r} \\[8pt]
+ &= \frac{1}{r} \int \frac{\dif u}{\sin \br{ u } + c/r}
+ &\explain{
+ u = \phi + x\\
+ du = dx
+ } \\[8pt]
+ &= \frac{2}{r\sqrt{\dfrac{c^2}{r^2} - 1}}
+ \arctan \br{
+ \frac
+ {\displaystyle \frac{c}{r} \tan \frac{u}{2} + 1}
+ {\displaystyle \sqrt{\frac{c^2}{r^2} - 1}}
+ } + C
+ &\explain{\text{По доказанному}}\\[8pt]
+ &= \frac{2}{\sqrt{c^2 - r^2}}
+ \arctan \br{
+ \frac
+ {\displaystyle \frac{c}{r} \tan \frac{\arccos \dfrac{a}{r}}{2} + 1}
+ {\displaystyle \sqrt{\frac{c^2}{r^2} - 1}}
+ } + C \\[8pt]
+ &= \frac{2}{\sqrt{c^2 - r^2}}
+ \arctan \br{
+ \frac
+ {\displaystyle c \tan \frac{\arccos \dfrac{a}{r}}{2} + r}
+ {\displaystyle \sqrt{c^2 - r^2}}
+ } + C \\[8pt]
+ &= \frac{2}{\sqrt{c^2 - a^2 - b^2}}
+ \arctan \br{
+ \frac
+ {\displaystyle c \tan \frac{\arccos \dfrac{a}{\sqrt{a^2 + b^2}}}{2} + \sqrt{a^2 + b^2}}
+ {\displaystyle \sqrt{c^2 - a^2 - b^2}}
+ } + C \\[8pt]
+ \end{align*}
+
+\clearpage
+
+\question{10}{
+ \[
+ \int \frac{\dif x}{(a\sin x + b\cos x)^n}
+ \]
+}
+
+ Найдем рекуррентную формулу для следующего интеграла:
+ \begin{align*}
+ \int \frac{\dif x}{\sin^n x}
+ &= -\int \frac{\dif \cos x}{\sin^{n + 1} x}\\[6pt]
+ &= -\frac{\cos x}{\sin^{n + 1} x} -
+ \int \br{ \frac{1}{\sin^{n + 1} x} }' \cos x \dif x
+ &\explain{
+ \displaystyle \int Fg \dif x = FG - \int fG \dif x\\
+ \displaystyle F = \frac{1}{\sin^{n + 1} x}\\[10pt]
+ \displaystyle g = \frac{\dif \cos x}{\dif x}\\
+ \displaystyle G = \cos x
+ } \\[8pt]
+ &= -\frac{\cos x}{\sin^{n + 1} x} -
+ (n + 1) \int \frac{\cos^2 x \dif x}{\sin^{n + 2} x} \\[8pt]
+ &= -\frac{\cos x}{\sin^{n + 1} x} -
+ (n + 1) \int \frac{(1 - \sin^2 x) \dif x}{\sin^{n + 2} x} \\[8pt]
+ &= -\frac{\cos x}{\sin^{n + 1} x} -
+ (n + 1) \int \frac{\dif x}{\sin^{n + 2} x} +
+ (n + 1) \int \frac{\dif x}{\sin^n x}
+ \end{align*}
+
+ Пусть $\displaystyle J_n = \int \frac{\dif x}{\sin^n x}$.
+
+ Переобозначим $n = n + 2$ в полученном интеграле, чтобы формула получилась красивой
+ \begin{align*}
+ J_{n - 2} &= -\frac{\cos x}{\sin^{n - 1} x} - (n - 1) J_n + (n - 1) J_{n - 2}\\[8pt]
+ (n - 1)J_n &= -\frac{\cos x}{\sin^{n - 1} x} + (n - 2)J_{n - 2}\\[8pt]
+ J_n &= \frac{\cos x}{(1 - n) \sin^{n - 1} x} + \frac{n - 2}{n - 1}J_{n - 2}
+ \end{align*}
+
+ Тогда:
+ \begin{align*}
+ I_n = \int \frac{\dif x}{(a\sin x + b\cos x)^n}
+ &= \frac{1}{r} \int \frac{\dif x}{(\frac{a}{r}\sin x + \frac{b}{r}\cos x)^n}
+ &\explain{
+ \displaystyle r = \sqrt{a^2 + b^2}
+ } \\[8pt]
+ &= \frac{1}{r} \int \frac{\dif x}{(\cos \phi \sin x + \sin \phi \cos x)^n}
+ &\explain{
+ \displaystyle \phi = \arccos \frac{a}{r} = \arcsin \frac{b}{r}
+ } \\[8pt]
+ &= \frac{1}{r} \int \frac{\dif x}{(\sin (\phi + x))^n} \\[8pt]
+ &= \frac{\cos (\phi + x)}{r(1 - n) \sin^{n - 1} (\phi + x)} +
+ \frac{n - 2}{n - 1} I_{n - 2} \\[8pt]
+ &= \frac{\cos (\arccos{\frac{a}{\sqrt{a^2 + b^2}}} + x)}
+ {\sqrt{a^2 + b^2}(1 - n) \sin^{n - 1} (\arccos{\frac{a}{\sqrt{a^2 + b^2}}} + x)} +
+ \frac{n - 2}{n - 1} I_{n - 2}
+ \end{align*}
+
+\end{document}
diff --git a/calc/sol0203.tex b/calc/sol0203.tex
new file mode 100644
index 0000000..f568637
--- /dev/null
+++ b/calc/sol0203.tex
@@ -0,0 +1,282 @@
+\documentclass[10pt,a5paper]{article}
+\usepackage[svgnames, rgb]{xcolor}
+
+\input{intro}
+
+\lhead{\color{gray} Шарафатдинов Камиль 192}
+\rhead{\color{gray} \texttt{sol0203}}
+\title{ДЗ на 10.02}
+\author{Шарафатдинов Камиль БПМИ-192}
+\date{билд: \today}
+
+
+% -- Here bet dragons --
+\begin{document}\thispagestyle{empty}
+
+\maketitle
+\clearpage
+\setcounter{page}{1}
+
+
+\newcommand{\deft}{\texttt{\\deft is undefined}}
+
+
+\question{1.b}{
+ \[
+ \int \frac{\dif x}{\sqrt[6]{(x - 7)^7(x - 5)^5}}
+ = -3\sqrt[6]{\dfrac{x - 5}{x - 7}} + C
+ \]
+}
+
+ \begin{align*}
+ \int \frac{\dif x}{\sqrt[6]{(x - 7)^7(x - 5)^5}}
+ &= -6 \int \frac{t^7 \dif t}{t^7 \br{ \sqrt[6]{x - 5} }^5}
+ &\explain{
+ \displaystyle t = \sqrt[6]{\frac{1}{x - 7}}\\[8pt]
+ \displaystyle \frac{\dif t}{\dif x}
+ = -\frac{1}{6} \br{ \sqrt[6]{\frac{1}{x - 7}} }^7
+ = -\frac{1}{6} t^7
+ }\\[8pt]
+ &= -6 \int \frac{\dif t}{\br{ \sqrt[6]{x - 5} }^5}\\[8pt]
+ &= -6 \int \frac{t^5 \dif t}{\br{ \sqrt[6]{1 + 2t^6} }^5}
+ &\explain{
+ \dfrac{1}{\sqrt[6]{x - 5}}
+ &= \displaystyle \sqrt[6]{\frac{1}{\frac{1}{t^6} + 2}}\\[8pt]
+ &= \dfrac{t}{\sqrt[6]{1 + 2t^6}}
+ }\\[8pt]
+ &= 3 \int \frac{u^5 \dif u}{u^7}
+ = 3 \int \frac{\dif u}{u^2}
+ &\explain{
+ \displaystyle u = \dfrac{1}{\sqrt[6]{1 + 2t^6}}\\
+ \displaystyle \frac{\dif u}{\dif t} = -2t^5 u^7\\
+ }\\
+ &= -\frac{3}{u} + C\\
+ &= -3\sqrt[6]{1 + 2t^6} + C\\
+ &= -3\sqrt[6]{1 + \dfrac{2}{x - 7}} + C\\
+ &= -3\sqrt[6]{\dfrac{x - 5}{x - 7}} + C
+ \end{align*}
+
+\clearpage
+
+\question{7.c}{
+ \[
+ \int \frac{\dif x}{1 + \sqrt{1 - 2x - x^2}}
+ \]
+}
+
+ Воспользуемся почти подстановкой Эйлера:
+ $
+ \displaystyle \sqrt{ax^2 + bx + c} = xt - \sqrt{c}
+ $
+
+ \begin{align*}
+ \int \frac{\dif x}{1 + \sqrt{1 - 2x - x^2}}
+ &= \int \frac{\dif x}{xt}
+ &\explain{
+ \displaystyle \sqrt{1 - 2x - x^2} = xt - 1\\[4pt]
+ \displaystyle 1 - 2x - x^2 = x^2t^2 - 2xt + 1\\[4pt]
+ \displaystyle x \br{ t^2 + 1 } = t - 1\\[4pt]
+ \displaystyle x = \dfrac{t - 1}{t^2 + 1}\\[16pt]
+ \displaystyle \dfrac{\dif x}{\dif t} = -2 \dfrac{t^2 - 2t - 1}{(t^2 + 1)^2}
+ }\\
+ &= \int \frac{-2\dfrac{t^2 - 2t - 1}{(t^2 + 1)^2} \dif t}
+ {2\dfrac{t - 1}{t^2 + 1} t}\\[8pt]
+ &= -\int \frac{(t^2 - 2t - 1)(t^2 + 1) \dif t}
+ {(t - 1)(t^2 + 1)^2 t}\\[8pt]
+ &= -\int \frac{(t^2 - 2t - 1) \dif t}
+ {(t - 1)(t^2 + 1) t}\\[8pt]
+ &= -\int \br{
+ \frac{2}{t^2 + 1} + \frac{1}{t} - \frac{1}{t - 1}
+ } \dif t\\[8pt]
+ &= -2\arctan t - \log{t} + \log(t - 1) + C\\[8pt]
+ &= -2\arctan \dfrac{\sqrt{1 - 2x - x^2} + 1}{x} + \log \dfrac{t - 1}{t} + C\\[8pt]
+ &= -2\arctan \dfrac{\sqrt{1 - 2x - x^2} + 1}{x}
+ + \log \dfrac{\sqrt{1 - 2x - x^2} + 1 - x}{\sqrt{1 - 2x - x^2} + 1} + C\\[8pt]
+ \end{align*}
+
+\clearpage
+
+\question{10.b}{
+ \[
+ \int \frac{x^8 \dif x}{\sqrt{x^2 + 1}}
+ \]
+}
+
+ Лемма (вообще говоря, это задача 9):
+ \begin{gather*}
+ P \in \mathbb{R}_n[x], \qquad
+ Q \in \mathbb{R}_{n - 1}[x], \qquad
+ R = \sqrt{ax^2 + bx + c} \implies
+ \int \frac{P \dif x}{R} = Q R + \lambda \int \frac{\dif x}{R}\\[16pt]
+ \br{ QR + \lambda \int \frac{\dif x}{R}}' =
+ Q'R + QR' + \frac{\lambda}{R} =
+ \frac{Q'R^2}{R} + \frac{Q(2ax + b)}{2R} + \frac{\lambda}{R} =
+ \frac{Q'R^2 + \frac{1}{2} Q(2ax + b) + \lambda}{R}
+ \end{gather*}
+
+ Надо бы ещё доказать, что такое $Q$ всегда найдется, но нам достаточно того, что в задаче такой $Q$ есть.
+
+ Тогда по лемме нам надо разложить $x^8$ на слагаемые $Q'(x^2 + 1) + Qx + \lambda$
+ для некоторого $Q$.
+
+ Пусть $Q = a_7x^7 + \ldots + a_0, \quad Q' = 7a_7x^6 + \ldots + a_1$
+
+ Получится система линейных уравнений, которую я выписывать не буду, а выпишу сразу ответ:
+ \[
+ Q = \frac{1}{8}x^7 - \frac{7}{48} x^5 + \frac{35}{192} x^3 - \frac{35}{128} x, \quad \lambda = \frac{35}{128}
+ \]
+
+ Тогда
+
+ \begin{align*}
+ \int \frac{x^8 \dif x}{\sqrt{x^2 + 1}} &= \br{
+ \frac{1}{8}x^7 - \frac{7}{48} x^5 + \frac{35}{192} x^3 - \frac{35}{128} x
+ } \sqrt{x^2 + 1} + \frac{25}{128}\int \frac{\dif x}{\sqrt{x^2 + 1}} \\[8pt]&=
+ \br{
+ \frac{1}{8}x^7 - \frac{7}{48} x^5 + \frac{35}{192} x^3 - \frac{35}{128} x
+ } \sqrt{x^2 + 1} + \frac{25}{128} \log \left|x + \sqrt{x^2 + 1}\right| + C
+ \end{align*}
+
+\question{17.b}{
+ \[
+ \int \frac{(x + 3) \dif x}{(x^2 + 1)\sqrt{x^2 + x + 1}}
+ \]
+}
+
+ \newcommand{\brac}[2]{ \br{ \dfrac{#1}{#2} } }
+ \newcommand{\sbrac}[2]{ \br{ \frac{#1}{#2} } }
+ \renewcommand{\deft}{\br{ \sqrt{x^2 + x + 1} - x }}
+
+ \begin{gather*}
+ \sqrt{x^2 + x + 1} = x + t\\
+ x^2 + x + 1 = x^2 + 2xt + t^2
+ \end{gather*}
+ \begin{align*}
+ x &= \frac{t^2 - 1}{1 - 2t}\\
+ \dif x &= -\frac{2(t^2 - t + 1)}{(1 - 2t)^2} \dif t\\
+ x + t &= \frac{t^2 - t + 1}{2t - 1}\\
+ x + 3 &= \frac{t^2 - 6t + 2}{1 - 2t}\\
+ x^2 + 1 &= \frac{t^4 + 2t^2 - 4t + 2}{(1 - 2t)^2}
+ \end{align*}
+
+ \begin{align*}
+ \int \frac{(x + 3) \dif x}{(x^2 + 1)\sqrt{x^2 + x + 1}}
+ &= -2 \int \frac{(x + 3)(t^2 - t + 1)\dif t}{(x^2 + 1)(x + t)(1 - 2t)^2}\\[8pt]
+ &= -2 \int \frac{
+ \brac{t^2 - 6t + 2}{1 - 2t}(t^2 - t + 1) \dif t
+ }{
+ \brac{t^4 + 2t^2 - 4t + 2}{(1 - 2t)^2}
+ \brac{t^2 - t + 1}{2t - 1}
+ (1 - 2t)^2
+ }\\[8pt]
+ &= -2 \int - \frac{t^2 - 6t + 2}{t^4 + 2t^2 - 4t + 2} \dif t\\[8pt]
+ &= 2 \int \frac{t^2 - 6t + 2}{t^4 + 2t^2 - 4t + 2} \dif t\\[8pt]
+ &= \frac{1}{\sqrt{2}} \int \br{
+ \frac{2 t - 3 \sqrt2 + 4}{-t^2 + \sqrt2 t + \sqrt2 - 2}
+ + \frac{2 t + 3 \sqrt2 + 4}{t^2 + \sqrt2 t + \sqrt2 + 2}
+ } \dif t\\[8pt]
+ \end{align*}
+
+ \renewcommand{\deft}{t}
+ \def\firstdenum{\br{ \deft - \frac{\sqrt2}{2} }^2 + \sbrac{\sqrt{6 - 4\sqrt2}}{2}^2}
+ \def\firstpoly{ \deft^2 - \sqrt2 \deft - \sqrt2 + 2 }
+ \def\firstsqrt{ \sqrt{6 - 4\sqrt2} }
+
+ \def\seconddenum{ \br{ \deft + \frac{\sqrt2}{2} }^2 + \sbrac{\sqrt{6 + 4\sqrt2}}{2}^2 }
+ \def\secondpoly{ \deft^2 + \sqrt2 \deft + \sqrt2 + 2 }
+ \def\secondsqrt{ \sqrt{6 + 4\sqrt2} }
+
+ \begin{align*}
+ \int \frac{2 t - 3 \sqrt2 + 4}{-t^2 + \sqrt2 t + \sqrt2 - 2}\dif t
+ &= -2 \int \frac{t - \frac{3\sqrt2}{2} + 2}{\firstdenum}\dif t\\[8pt]
+ &= -2 \int \frac{t - \frac{\sqrt2}{2}}{\firstdenum} \dif t
+ -2 \int \frac{-\sqrt2 + 2}{\firstdenum} \dif t\\[8pt]
+ &= - \int \frac{\dif \br{ \firstpoly }}{\firstpoly} \dif t
+ +2(\sqrt2 - 2) \frac{2}{\firstsqrt} \arctan \frac{2t - \sqrt2}{\firstsqrt}\\[8pt]
+ &= -\log{ \left|\firstpoly\right| } -
+ 4\arctan \frac{2t - \sqrt2}{\firstsqrt} + C_1
+ \end{align*}
+
+ \begin{align*}
+ \int \frac{2 t + 3 \sqrt2 + 4}{\secondpoly}\dif t
+ &= \int \frac{2t + 3\sqrt2 + 4}{\seconddenum} \dif t\\[8pt]
+ &= \int \frac{2t + \sqrt2}{\seconddenum} +
+ \int \frac{2\sqrt2 + 4}{\seconddenum}\\[8pt]
+ &= \log{ \left|\secondpoly\right| } +
+ 2(\sqrt2 + 2)\frac{2}{\secondsqrt} \arctan \frac{2t + \sqrt2}{\secondsqrt} + C_2\\[8pt]
+ &= \log{ \left|\secondpoly\right| } +
+ 4\arctan \frac{2t + \sqrt2}{\secondsqrt} + C_2
+ \end{align*}
+
+ \begin{align*}
+ \int \frac{(x + 3) \dif x}{(x^2 + 1)\sqrt{x^2 + x + 1}}
+ &= -\log{ \left|\firstpoly\right| } -
+ 4\arctan \frac{2t - \sqrt2}{\firstsqrt}\\[8pt]
+ & +\log{ \left|\secondpoly\right| } +
+ 4\arctan \frac{2t + \sqrt2}{\secondsqrt} + C\\[8pt]
+ \end{align*}
+ \renewcommand{\deft}{\br{\sqrt{x^2 + x + 1} - x}}
+ \begin{align*}
+ &= -\log{ \left|\firstpoly\right| } -
+ 4\arctan \frac{2\deft - \sqrt2}{\firstsqrt}\\[8pt]
+ & +\log{ \left|\secondpoly\right| } +
+ 4\arctan \frac{2\deft + \sqrt2}{\secondsqrt} + C
+ \end{align*}
+
+\clearpage
+\question{17.c}{
+ \[
+ \int \frac{\dif x}{(x^3 - x)\sqrt{x^2 + x + 4}}
+ \]
+}
+ \begin{gather*}
+ \sqrt{x^2 + x + 4} = x + t\\
+ x^2 + x + 4 = x^2 + 2xt + t^2
+ \end{gather*}
+ \begin{align*}
+ x &= \frac{t^2 - 4}{1 - 2t}\\
+ \dif x &= -\frac{2(t^2 - t + 4)}{(1 - 2t)^2} \dif t\\
+ x + t &= \frac{t^2 - t + 4}{2t - 1}
+ \end{align*}
+
+ \medskip
+
+ \renewcommand{\deft}{\sqrt{x^2 + x + 4} - x}
+
+ \begin{align*}
+ \int \frac{\dif x}{(x^3 - x)\sqrt{x^2 + x + 4}}
+ &= \int \frac{\dif x}{x(x + 1)(x - 1)\sqrt{x^2 + x + 4}}\\[8pt]
+ &= -\int \frac{2(t^2 - t + 4) \dif t}{(1 - 2t)^2 x(x + 1)(x - 1)(x + t)}\\[8pt]
+ &= -2\int \frac{(t^2 - t + 4) \dif t}{
+ (1 - 2t)^2
+ \brac{t^2 - 4}{1 - 2t}
+ \brac{t^2 - 5 + 2t}{1 - 2t}
+ \brac{t^2 - 3 - 2t}{1 - 2t}
+ \brac{t^2 - t + 4}{2t - 1}
+ }\\[8pt]
+ &= 2 \int \frac{(1 - 2t)^2 \dif t}{
+ (t^2 - 4)(t^2 + 2t - 5)(t^2 - 2t - 3)
+ }\\[8pt]
+ &= 2 \int \frac{(1 - 2t)^2 \dif t}{
+ (t - 2)(t + 2)(t - \sqrt{6} + 1)(t + \sqrt{6} + 1)(t + 1)(t - 3)
+ }\\[8pt]
+ &= 2\int \br{
+ -\frac{1}{t^2 - 4}
+ -\frac{1}{8(t + 1)}
+ +\frac{1}{8(t - 3)}
+ -\frac{1}{4\sqrt{6}(t + \sqrt{6} + 1)}
+ +\frac{1}{4\sqrt{6}(t - \sqrt{6} + 1)}
+ } \dif t\\[8pt]
+ &= -\arctan \frac{t}{2}
+ -\frac{1}{4}\log |t + 1|
+ +\frac{1}{4}\log |t - 3|
+ -\frac{1}{2\sqrt{6}}\log |t + \sqrt{6} + 1|
+ +\frac{1}{2\sqrt{6}}\log |t - \sqrt{6} + 1|\\[8pt]
+ &= -\arctan \frac{\deft}{2}
+ -\frac{1}{4}\log |\deft + 1|
+ +\frac{1}{4}\log |\deft - 3|\\[8pt]
+ &-\frac{1}{2\sqrt{6}}\log |\deft + \sqrt{6} + 1|
+ +\frac{1}{2\sqrt{6}}\log |\deft - \sqrt{6} + 1|\\[8pt]
+ \end{align*}
+
+\end{document}
diff --git a/calc/sol0210.tex b/calc/sol0210.tex
new file mode 100644
index 0000000..bb4ad94
--- /dev/null
+++ b/calc/sol0210.tex
@@ -0,0 +1,56 @@
+\documentclass[10pt,a5paper]{article}
+\usepackage[svgnames, rgb]{xcolor}
+
+\input{intro}
+
+\lhead{\color{gray} Шарафатдинов Камиль 192}
+\rhead{\color{gray} \texttt{sol0203}}
+\title{ДЗ на 10.02}
+\author{Шарафатдинов Камиль БПМИ-192}
+\date{билд: \today}
+
+
+% -- Here bet dragons --
+\begin{document}\thispagestyle{empty}
+
+\maketitle
+\clearpage
+\setcounter{page}{1}
+
+\question{1.f}{
+ \[
+ \int_1^e \sin \log x \dif x
+ \]
+}
+
+ \begingroup
+ \setlength{\jot}{8pt}
+ \begin{align*}
+ I = \int \sin \log \dif x
+ &= \int e^u \sin u \dif u
+ &\explain{
+ \displaystyle u = \log x\\
+ \displaystyle \dif u = \frac{\dif x}{x} = \frac{\dif x}{e^u}
+ }\\
+ &= - e^u \cos u + \int e^u \cos u \dif u\\
+ &= - e^u \cos u + e^u \sin u - \int e^u \sin u \dif u
+ \end{align*}
+ \endgroup
+
+ \begin{flalign*}
+ 2I = e^u (\sin u - \cos u) + C\\
+ I = \frac{e^u}{2} (\sin u - \cos u) + C =
+ \frac{x}{2} (\sin \log x - \cos \log x) + C
+ \end{flalign*}
+
+ \[
+ \int_1^e \sin \log x \dif x =
+ \frac{e}{2} (\sin 1 - \cos 1) - \frac{1}{2} (0 - 1) =
+ \frac{e}{2} (\sin 1 - \cos 1) + \frac{1}{2}
+ \]
+
+\vspace*{\fill}
+
+ P.S. Ну проверь хотя бы одну задачу, пожаааалуйста
+
+\end{document}