diff options
author | syn <isaqtm@gmail.com> | 2020-04-15 04:35:30 +0300 |
---|---|---|
committer | syn <isaqtm@gmail.com> | 2020-04-15 04:35:30 +0300 |
commit | f642380d55c66e4e5deaaa6c7cef15f6dbfe36c6 (patch) | |
tree | 31ed9377de27678b376668131e0cbf8a8639ce16 /calc | |
parent | 406cd62e6c18587b2859bf77434527f2ac87027d (diff) | |
download | tex2-f642380d55c66e4e5deaaa6c7cef15f6dbfe36c6.tar.gz |
Reorganize & alg-1
Diffstat (limited to 'calc')
-rw-r--r-- | calc/sol0113.tex | 22 | ||||
-rw-r--r-- | calc/sol0120.tex | 372 | ||||
-rw-r--r-- | calc/sol0127.tex | 268 | ||||
-rw-r--r-- | calc/sol0203.tex | 282 | ||||
-rw-r--r-- | calc/sol0210.tex | 56 |
5 files changed, 1000 insertions, 0 deletions
diff --git a/calc/sol0113.tex b/calc/sol0113.tex new file mode 100644 index 0000000..06ac8d6 --- /dev/null +++ b/calc/sol0113.tex @@ -0,0 +1,22 @@ +\documentclass[10pt,a5paper]{article} +\usepackage[svgnames, rgb]{xcolor} + +\input{intro} + +\lhead{\color{gray} Шарафатдинов Камиль 192} +\rhead{\color{gray} ДЗ к 27.01 (\texttt{sol0113 + sol0120})} +\title{ДЗ на 27.01} +\author{Шарафатдинов Камиль БПМИ-192} +\date{билд: \today} + + +% -- Here bet dragons -- +\begin{document}\thispagestyle{empty} + +\maketitle +\clearpage +\setcounter{page}{1} +\[ + \abs{\frac{1}{2}} +\] +\end{document} diff --git a/calc/sol0120.tex b/calc/sol0120.tex new file mode 100644 index 0000000..f073973 --- /dev/null +++ b/calc/sol0120.tex @@ -0,0 +1,372 @@ +\documentclass[10pt,a5paper]{article} +\usepackage[svgnames, rgb]{xcolor} + +\input{intro} + +\lhead{\color{gray} Шарафатдинов Камиль 192} +\rhead{\color{gray} ДЗ к 27.01 (\texttt{sol0113 + sol0120})} +\title{ДЗ на 27.01} +\author{Шарафатдинов Камиль БПМИ-192} +\date{билд: \today} + + +% -- Here bet dragons -- +\begin{document}\thispagestyle{empty} + +\maketitle +\clearpage +\setcounter{page}{1} + +\question{Лемма 1}{ + \[ + \int \frac{dx}{x^s} = \frac{1}{(1 - s)x^{s - 1}} + C + \] +} + \[ + \ br{ \frac{1}{(1 - s)x^{s - 1}} + C }' = + -\frac{0 - (1 - s)(s - 2)x^{s - 2}}{(1 - s)^2 x^{2s - 2}} = + \frac{1}{x^s} \qed + \] + +\question{Лемма 2}{ + \[ + \int \frac{dx}{(x^2 + a^2)^2} = \frac{1}{2a^2} \ br{ + \frac{x}{x^2 + a^2} + \frac{1}{a}\arctan\frac{x}{a} + } + C + \] +} + + \begin{align*} + \ br{ + \frac{1}{2a^2} \ br{ + \frac{x}{x^2 + a^2} + \frac{1}{a}\arctan\frac{x}{a} + } + }' = + \frac{1}{2a^2} \ br{ + \frac{x^2 + a^2 - 2x^2}{(x^2 + a^2)^2} + \frac{1}{x^2 + a^2} + } = + \frac{1}{2a^2} \ br{ + \frac{2a^2}{(x^2 + a^2)^2} + } = + \frac{1}{(x^2 + a^2)^2} \qed + \end{align*} + +\question{(seminar0113) 7.3}{ + \[ + \int \frac{dx}{x^4 + 4} = \frac{ + \log | x^2 + 2x + 2 | + 2\arctan(x + 1) - + \log | x^2 - 2x + 2 | + 2\arctan(x - 1) + }{16} + \bar{C} + \] +} + + \[ + x^4 + 4 = (x - (1 + i))(x - (i - 1))(x - (-i - 1))(x - (-i + 1)) = + (x^2 + 2x + 2)(x^2 - 2x + 2) + \] + + \[ + \frac{1}{x^4 + 4} = \frac{Ax + B}{x^2 + 2x + 2} + \frac{Cx + D}{x^2 - 2x + 2} + \] + + \[ + (Ax + B)(x^2 - 2x + 2) + (Cx + D)(x^2 + 2x + 2) \equiv 1 + \] + + С помощью давно забытой китайской техники решения систем уравнений получаем: + \[\begin{cases*} + A = \frac{1}{8}\\ + B = \frac{1}{4}\\ + C = -\frac{1}{8}\\ + D = \frac{1}{4}\\ + \end{cases*}\] + + \[ + \int \frac{1}{x^4 + 4} = + \frac{1}{8}\int \frac{x + 2}{x^2 + 2x + 2} dx + + \frac{1}{8}\int \frac{2 - x}{x^2 - 2x + 2} dx + \] + + \begin{minipage}{0.45\textwidth} + \setlength{\jot}{16pt} + \begin{gather*} + \int \frac{x + 2}{x^2 + 2x + 2} dx =\\ + \int \frac{x + 2}{(x + 1)^2 + 1} dx =\\ + \int \frac{(x + 1) dx}{(x + 1)^2 + 1} + \int \frac{dx}{(x + 1)^2 + 1} =\\ + =\begin{bmatrix} \frac{d(x^2 + 2x + 2)}{2} = (x + 1)dx \end{bmatrix} =\\ + \int \frac{\frac{1}{2}d( (x + 1)^2 + 1 )}{(x + 1)^2 + 1} + \arctan(x + 1) =\\ + = \frac{1}{2}\log | x^2 + 2x + 2 | + \arctan(x + 1) + C_1 + \end{gather*} + \end{minipage} + \begin{minipage}{0.45\textwidth} + \begin{tabular}{|p{\textwidth}} + \setlength{\jot}{16pt} + \begin{gather*} + \int \frac{2 - x}{x^2 - 2x + 2} dx =\\ + -\int \frac{x - 2}{(x - 1)^2 + 1} dx =\\ + -\int \frac{(x - 1) dx}{(x - 1)^2 + 1} + \int \frac{dx}{(x - 1)^2 + 1} =\\ + =\begin{bmatrix} \frac{d(x^2 - 2x + 2)}{2} = (x - 1)dx \end{bmatrix} =\\ + -\int \frac{\frac{1}{2}d( (x - 1)^2 + 1 )}{(x - 1)^2 + 1} + \arctan(x - 1) =\\ + = -\frac{1}{2}\log | x^2 - 2x + 2 | + \arctan(x - 1) + C_2 + \end{gather*} + \end{tabular} + \end{minipage} + + \begin{gather*} + \frac{1}{8}\int \frac{x + 2}{x^2 + 2x + 2} dx + + \frac{1}{8}\int \frac{2 - x}{x^2 - 2x + 2} dx =\\ + =\frac{1}{16}\ br{ + \log | x^2 + 2x + 2 | + 2\arctan(x + 1) - + \log | x^2 - 2x + 2 | + 2\arctan(x - 1) + } + \bar{C} + \end{gather*} + +\question{(seminar0113) 8.b}{ + \[ + \int \frac{x^5 - x}{x^8 + 1}dx = \frac{\sqrt{2}}{8} \ br{ + \log |x^4 - \sqrt{2} x^2 + 1| - \log |x^4 + \sqrt{2} x^2 + 1| + } + \bar{C} + \] +} + + \[ + \int \frac{x^5 - x}{x^8 + 1}dx = + \int \frac{x(x^4 - 1}{x^8 + 1}dx = + \begin{bmatrix} + u = x^2\\ + dx = \frac{du}{2x} + \end{bmatrix} = + \int \frac{x(u^2 - 1)}{u^4 + 1}\frac{du}{2x} = + \frac{1}{2} \int \frac{u^2 - 1}{u^4 + 1} du + \] + \[ + u^4 + 1 = \ br{u^2 + \sqrt{2} u + 1}\ br{u^2 - \sqrt{2} u + 1} + \] + \[ + \frac{u^2 - 1}{u^4 + 1} = + \frac{Au + B}{u^2 + \sqrt{2} u + 1} + + \frac{Cu + D}{u^2 - \sqrt{2} u + 1} + \] + + \[ + (Au + B)(u^2 - \sqrt{2}u + 1) + (Cu + D)(u^2 + \sqrt{2}u + 1) \equiv u^2 - 1 + \] + + Все тем же китайским методом: + \[\begin{cases*} + A = -\frac{\sqrt{2}}{2}\\ + B = -\frac{1}{2}\\ + C = \frac{\sqrt{2}}{2}\\ + D = -\frac{1}{2}\\ + \end{cases*}\] + + \newcommand{\invsq}{\frac{\sqrt{2}}{2}} + \[ + \int \frac{u^2 - 1}{u^4 + 1} du = + \invsq \int \frac{-u - \invsq}{u^2 + \sqrt{2} u + 1} du + + \invsq \int \frac{u - \invsq}{u^2 - \sqrt{2} u + 1} du + \] + + \begin{minipage}{0.45\textwidth} + \setlength{\jot}{16pt} + \begin{gather*} + \int \frac{-u - \invsq}{u^2 + \sqrt{2} u + 1} du =\\ + -\int \frac{u + \invsq}{u^2 + \sqrt{2} u + 1} du =\\ + -\frac{1}{2} \int \frac{d \ br{ u^2 + \sqrt{2} u + 1 }}{u^2 + \sqrt{2} u + 1} =\\ + -\frac{1}{2} \log |u^2 + \sqrt{2} u + 1| + C_1 + \end{gather*} + \end{minipage} + \begin{minipage}{0.45\textwidth} + \begin{tabular}{|p{\textwidth}} + \setlength{\jot}{16pt} + \begin{gather*} + \int \frac{u - \invsq}{u^2 - \sqrt{2} u + 1} du =\\ + \int \frac{u + \invsq}{u^2 - \sqrt{2} u + 1} du =\\ + \frac{1}{2} \int \frac{d \ br{ u^2 - \sqrt{2} u + 1 }}{u^2 - \sqrt{2} u + 1} =\\ + \frac{1}{2} \log |u^2 - \sqrt{2} u + 1| + C_2 + \end{gather*} + \end{tabular} + \end{minipage} + + \[ + \frac{1}{2} \int \frac{u^2 - 1}{u^4 + 1} du = + \frac{\sqrt{2}}{8} \ br{ + \log |u^2 - \sqrt{2} u + 1| - \log |u^2 + \sqrt{2} u + 1| + } + C_3 + \] + + Обратно к $x$: + \[ + \int \frac{x^5 - x}{x^8 + 1}dx = + \frac{\sqrt{2}}{8} \ br{ + \log |x^4 - \sqrt{2} x^2 + 1| - \log |x^4 + \sqrt{2} x^2 + 1| + } + \bar{C} + \] + +\clearpage +\question{(seminar0113) 13}{ + \[ + \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \ br{ + -8 \log |x + 2| + 6 \log |x + 3| + \log (x^2 + 1) + 2\arctan x + } + \bar{C} + \] +} + \[ + \frac{x}{(x^2 + 1)(x + 2)(x + 3)} = + \frac{Ax + B}{x^2 + 1} + \frac{C}{x + 2} + \frac{D}{x + 3} + \] + + \[ + (Ax + B)(x + 2)(x + 3) + C(x^2 + 1)(x + 3) + D(x^2 + 1)(x + 2) \equiv x + \] + \[\begin{cases*} + A = 0.1\\ + B = 0.1\\ + C = -0.4\\ + D = 0.3\\ + \end{cases*}\] + + \begin{gather*} + \int -\frac{2}{5} \frac{dx}{x + 2} = -\frac{2 \log |x + 2|}{5} + C_1\\[16pt] + \int \frac{3}{10} \frac{dx}{x + 3} = \frac{3 \log |x + 3|}{10} + C_2\\[16pt] + \int \frac{1}{10} \frac{(x + 1) dx}{x^2 + 1} = + \frac{1}{10} \ br{ + \frac{1}{2}\int \frac{2x \ dx}{x^2 + 1} + \int \frac{dx}{x^2 + 1} + } = + \frac{1}{10} \ br{ + \frac{1}{2} \log (x^2 + 1) + \arctan(x) + } + C_3 + \end{gather*} + + \[ + \int \frac{x \ dx}{(x^2 + 1)(x + 2)(x + 3)} = \frac{1}{20} \ br{ + -8 \log |x + 2| + 6 \log |x + 3| + \log (x^2 + 1) + 2\arctan x + } + \bar{C} + \] + +\question{(seminar0120) 2.4}{ + \[ + \int \frac{dx}{x(x^2 + 1)^2} = -\frac{1}{2} \ br{ + -\log (x^2 + 1) + + \frac{1}{x^2 + 1} + + 2\log |x| + } + \bar{C} + \] +} + + \[ + \frac{1}{x(x^2 + 1)^2} = + \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{(x^2 + 1)^2} + \frac{E}{x} + \] + + \[ + (Ax + B)(x^2 + 1)x + (Cx + D)x + E(x^2 + 1)^2 \equiv 1 + \] + + \[\begin{cases*} + A = -1\\ + B = 0\\ + C = -1\\ + D = 0\\ + E = 1 + \end{cases*}\] + + \begin{gather*} + \int - \frac{x \ dx}{x^2 + 1} = + -\frac{1}{2} \int \frac{2x \ dx}{x^2 + 1} = + -\frac{1}{2} \log (x^2 + 1) + C_1\\[12pt] + \int - \frac{x \ dx}{(x^2 + 1)^2} = + -\frac{1}{2} \int \frac{2x \ dx}{(x^2 + 1)^2} = + \begin{bmatrix} + \displaystyle \int \frac{dx}{x^s} = \frac{1}{(1 - s)x^{s - 1}} + C + \end{bmatrix} = + \frac{1}{2(x^2 + 1)} + C_2\\[12pt] + \int \frac{dx}{x} = \log |x| + C_3 + \end{gather*} + + \[ + \int \frac{dx}{x(x^2 + 1)^2} = + -\frac{1}{2} \log (x^2 + 1) + + \frac{1}{2(x^2 + 1)} + + \log |x| + \bar{C} + \] + +\question{(seminar0120) 11}{ + \[ + \int \frac{dx}{(x^3 + 1)^2} + \] +} + + \[ + \frac{1}{(x^3 + 1)^2} = \frac{1}{(x + 1)^2(x^2 - x + 1)^2} = + \frac{A}{x + 1} + \frac{B}{(x + 1)^2} + \frac{Cx + D}{x^2 - x + 1} + \frac{Ex + F}{(x^2 - x + 1)^2} + \] + + \[ + A(x^2 - x + 1)^2(x + 1) + + B(x^2 - x + 1)^2 + + (Cx + D)(x + 1)^2(x^2 - x + 1) + + (Ex + F)(x + 1)^2 \equiv 1 + \] + \[\begin{cases*} + A = 2/9\\ + B = 1/9\\ + C = -2/9, \ \ + D = 1/3\\ + E = -1/3, \ \ + F = 1/3\\ + \end{cases*}\] + + \begin{align} + \int \frac{2dx}{9(x + 1)} &= \frac{2}{9} \log |x + 1| + C_1 &\\[8pt] + \int \frac{dx}{9(x + 1)^2} & = -\frac{1}{9(x + 1)} + C_2 & + \begin{bmatrix} + \text{Лемма 1} + \end{bmatrix}\\[8pt] + \int \frac{-2x + 3}{9(x^2 - x + 1)}dx &= + -\frac{1}{9} \ br{ + \int \frac{(2x - 1) dx}{x^2 - x + 1} - + \int \frac{2 dx}{\ br{ x - \frac{1}{2} }^2 + \frac{3}{4}} + }\nonumber \\[8pt] + &= + -\frac{1}{9} \ br{ + \log (x^2 - x + 1) - + \frac{4}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}} + } + C_3\\[8pt] + \frac{1}{3} \int \frac{(1 - x)dx}{(x^2 - x + 1)^2} &= + -\frac{1}{6} \ br{ + \int \frac{(2x - 1)dx}{(x^2 - x + 1)^2} - + \int \frac{dx}{\ br{ \ br{ x - \frac{1}{2} }^2 + \frac{3}{4} }^2} + }\nonumber \\[8pt] + &= + -\frac{1}{6} \ br{ + -\frac{1}{x^2 - x + 1} + + \frac{2}{3} \ br{ + \frac{x}{x^2 - x + 1} + + \frac{2}{\sqrt{3}} \arctan\frac{2x - 1}{\sqrt{3}} + } + } + C_4 + &\begin{bmatrix} + \text{Лемма 1 на левую часть}\\ + \text{Лемма 2 на правую часть} + \end{bmatrix} + \nonumber \\[8pt] + &= \frac{1}{9} \ br{ + \frac{2x - 1}{x^2 - x + 1} - + \frac{2}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}} + } + C_4 + \end{align} + + \begin{gather*} + \int \frac{1}{(x^3 + 1)^2} = + \int \frac{2dx}{9(x + 1)} + + \int \frac{dx}{9(x + 1)^2} + + \int \frac{-2x + 3}{9(x^2 - x + 1)}dx + + \frac{1}{3} \int \frac{(1 - x)dx}{(x^2 - x + 1)^2} =\\[16pt] + \frac{1}{9} \ br{ + 2\log |x + 1| - \frac{1}{x + 1} + - \log(x^2 - x + 1) + \frac{4}{\sqrt{3}}\arctan \frac{2x - 1}{\sqrt{3}} + - \frac{2x - 1}{x^2 - x + 1} - \frac{2}{\sqrt{3}}\arctan\frac{2x - 1}{\sqrt{3}} + } + C + \end{gather*} +\end{document}
\ No newline at end of file diff --git a/calc/sol0127.tex b/calc/sol0127.tex new file mode 100644 index 0000000..1098687 --- /dev/null +++ b/calc/sol0127.tex @@ -0,0 +1,268 @@ +\documentclass[10pt,a5paper]{article} +\usepackage[svgnames, rgb]{xcolor} + +\input{intro} + +\lhead{\color{gray} Шарафатдинов Камиль 192} +\rhead{\color{gray} \texttt{sol0127}} +\title{ДЗ на 03.02} +\author{Шарафатдинов Камиль БПМИ-192} +\date{билд: \today} + + +% -- Here bet dragons -- +\begin{document}\thispagestyle{empty} + +\maketitle +\clearpage +\setcounter{page}{1} + +%\question{8.a}{ +% \[ +% \int \frac{2\sin^3 x + \cos^2 x \sin 2x}{\sin^4 x + 3 \cos^4 x} \dif x = \todo + C +% \] +%} + + + +\question{8.c}{ + \[ + \int \frac{\dif x}{\cosh^3 x + 3\cosh x} = \frac{ + 2\arctan \sinh x - \arctan \frac{\sinh x}{2} + }{6} + C + \] +} + \begin{align*} + \int \frac{\dif x}{\cosh^3 x + 3\cosh x} + &= \int \frac{\frac{\dif \sinh x}{\cosh x}}{\cosh^3 x + 3\cosh x} + &\explain{ + \dif \sinh x = \cosh x \dif x + } \\[8pt] + &= \int \frac{\dif \sinh x}{\cosh^4 x + 3\cosh^2 x} \\[8pt] + &= \int \frac{\dif \sinh x}{\br{ 1 + \sinh^2 x }^2 + 3\br {1 + \sinh^2 x}} + &\explain{ + \cosh^2 x - \sinh^2 x = 1 + } \\[8pt] + &= \int \frac{\dif u}{\br{ 1 + u^2 }^2 + 3\br {1 + u^2}} + &\explain{ + u = \sinh x + } \\[8pt] + &= \int \frac{\dif u}{4 + 5u^2 + u^4} \\[8pt] + &= \int \frac{\dif u}{\br{ u^2 + 1 } \br{ u^2 + 4 }} \\[8pt] + &= \int \frac{\dif u}{3} \br{ + \frac{1}{ u^2 + 1 } - \frac{1}{ u^2 + 4 } + } \\[8pt] + &= \frac{1}{3} \br{ + \int \frac{du}{u^2 + 1} - \int \frac{du}{u^2 + 4} + } \\[8pt] + &= \frac{1}{3} \br{ + \arctan u - \frac{1}{2}\arctan \frac{u}{2} + } + C + &\explain{ + u = \sinh x + }\\[8pt] + &= \frac{1}{6} \br{ + 2\arctan \sinh x - \arctan \frac{\sinh x}{2} + } + C + \end{align*} + +\clearpage +\question{8.e}{ + \[ + \int \frac{\dif x}{\sin^4 x + \cos^4 x} = \frac{\sqrt{2}}{2} \br{ + \arctan \br{ \sqrt{2} \tan x + 1 } + \arctan \br{ \sqrt{2} \tan x - 1 } + } + C + \] +} + + \[ + \sin^4 x + \cos^4 x = + \br{ 1 - \cos^2 x }^2 + \cos^4 x = + 1 - 2\cos^2 x + 2\cos^4 x + \] + \[ + \dif x = \cos^2 x \dif\ (\tan x) + \] + \[ + 1 + \tan^2 x = \frac{1}{\cos^2 x} + \] + + \begin{align*} + \int \frac{\dif x}{\sin^4 x + \cos^4 x} + &= \int \frac{\cos^2 x \dif\ (\tan x)}{1 - 2\cos^2 x + 2\cos^4 x} \\[8pt] + &= \int \frac{\dif\ (\tan x)}{\frac{1}{\cos^2 x} - 2 + 2\cos^2 x} \\[8pt] + &= \int \frac{\dif\ (\tan x)}{1 + \tan^2 x - 2 + \frac{2}{1 + \tan^2 x}} \\[8pt] + &= \int \frac{\dif u}{-1 + u^2 + \frac{2}{1 + u^2}} & [u = \tan x]\\[8pt] + &= \int \frac{(1 + u^2) \dif u}{u^4 + 1} \\[8pt] + \end{align*} + + По прошлой домашке мы знаем, что + \[ + x^4 + 1 = (x^2 - \sqrt{2} x + 1)(x^2 + \sqrt{2} x + 1) + \] + + Разложим на слагаемые: + \[ + \frac{x^2 + 1}{x^4 + 1} = + \frac{1}{2} \br{ \frac{1}{x^2 + \sqrt{2} x + 1} + \frac{1}{x^2 - \sqrt{2} + 1} } + \] + + \begin{align*} + \int \frac{1}{u^2 + \sqrt{2} u + 1}\dif u + &= \int \frac{1}{\br{ u + \frac{\sqrt{2}}{2} }^2 + \frac{1}{2}}\dif u \\[8pt] + &= \sqrt{2} \arctan \br{ \sqrt{2} u + 1 } + C_1 \\[16pt] + \int \frac{1}{u^2 - \sqrt{2} u + 1}\dif u + &= \int \frac{1}{\br{ u - \frac{\sqrt{2}}{2} }^2 + \frac{1}{2}}\dif u \\[8pt] + &= \sqrt{2} \arctan \br{ \sqrt{2} u - 1 } + C_2 \\[8pt] + \end{align*} + + \begin{gather*} + \int \frac{\dif x}{\sin^4 x + \cos^4 x} = + \int \frac{(\tan^2 x + 1) \dif\ \tan x}{\tan^4 x + 1} =\\[8pt] = + \frac{\sqrt{2}}{2} \br{ + \arctan \br{ \sqrt{2} \tan x + 1 } + \arctan \br{ \sqrt{2} \tan x - 1 } + } + C + \end{gather*} + +\question{8.g}{ + \[ + \int \frac{\dif x}{a \sin x + b \cos x + c}, \qquad c > \sqrt{a^2 + b^2} + \] +} + + Найдем такой интеграл в предположении $a > 1$: + + \begin{align*} + \int \frac{\dif x}{\sin x + a} + &= \int \frac{\frac{2 \dif u}{1 + u^2}}{\frac{2u}{1 + u^2} + a} + &\explain{ + \displaystyle u = \tan \frac{x}{2}\\[8pt] + \displaystyle \dif x = \frac{2 \dif u}{1 + u^2}\\[8pt] + \displaystyle \sin x = \frac{2u}{1 + u^2} + } \\[8pt] + &= \int \frac{2\dif u}{2u + a + au^2} \\[8pt] + &= \int \frac{2\dif u} + {\br{ \sqrt{a} u + \frac{1}{\sqrt{a}} }^2 + 1 - \frac{1}{a}} \\[8pt] + &= \int \frac{2\dif u} + {\br{ \sqrt{a} u + \frac{1}{\sqrt{a}} }^2 + \frac{a^2 - 1}{a}} \\[8pt] + &= \frac{2}{\sqrt{a}}\int \frac{\dif v}{v^2 + \frac{a^2 - 1}{a}} + &\explain{ + v = \sqrt{a} u + \frac{1}{\sqrt{a}}\\ + \dif v = \sqrt{a} \dif u + } \\[8pt] + &= \frac{2\sqrt{a}}{\sqrt{a}\sqrt{a^2 - 1}} + \arctan \br{ \frac{\sqrt{a} v}{\sqrt{a^2 - 1}} } + C \\[8pt] + &= \frac{2}{\sqrt{a^2 - 1}} + \arctan \br{ \frac{\sqrt{a} v}{\sqrt{a^2 - 1}} } + C \\[8pt] + &= \frac{2}{\sqrt{a^2 - 1}} + \arctan \br{ \frac{au + 1}{\sqrt{a^2 - 1}} } + C + &\explain{ + v = \sqrt{a} u + \frac{1}{\sqrt{a}} + } \\[8pt] + &= \frac{2}{\sqrt{a^2 - 1}} + \arctan \br{ \frac{a \tan \frac{x}{2} + 1}{\sqrt{a^2 - 1}} } + C + \end{align*} + + Теперь, непосредственно задание + + \begin{align*} + \int \frac{\dif x}{a \sin x + b \cos x + c} + &= \int \frac{\dif x}{r \br{ \frac{a}{r} \sin x + \frac{b}{r} \cos x} + c } + &\explain{ + \displaystyle r = \sqrt{a^2 + b^2} + } \\[8pt] + &= \frac{1}{r} \int \frac{\dif x}{\cos \phi \sin x + \sin \phi \cos x + c/r} + &\explain{ + \displaystyle \phi = \arccos \frac{a}{r} = \arcsin \frac{b}{r} + } \\[8pt] + &= \frac{1}{r} \int \frac{\dif x}{\sin \br{ \phi + x } + c/r} \\[8pt] + &= \frac{1}{r} \int \frac{\dif u}{\sin \br{ u } + c/r} + &\explain{ + u = \phi + x\\ + du = dx + } \\[8pt] + &= \frac{2}{r\sqrt{\dfrac{c^2}{r^2} - 1}} + \arctan \br{ + \frac + {\displaystyle \frac{c}{r} \tan \frac{u}{2} + 1} + {\displaystyle \sqrt{\frac{c^2}{r^2} - 1}} + } + C + &\explain{\text{По доказанному}}\\[8pt] + &= \frac{2}{\sqrt{c^2 - r^2}} + \arctan \br{ + \frac + {\displaystyle \frac{c}{r} \tan \frac{\arccos \dfrac{a}{r}}{2} + 1} + {\displaystyle \sqrt{\frac{c^2}{r^2} - 1}} + } + C \\[8pt] + &= \frac{2}{\sqrt{c^2 - r^2}} + \arctan \br{ + \frac + {\displaystyle c \tan \frac{\arccos \dfrac{a}{r}}{2} + r} + {\displaystyle \sqrt{c^2 - r^2}} + } + C \\[8pt] + &= \frac{2}{\sqrt{c^2 - a^2 - b^2}} + \arctan \br{ + \frac + {\displaystyle c \tan \frac{\arccos \dfrac{a}{\sqrt{a^2 + b^2}}}{2} + \sqrt{a^2 + b^2}} + {\displaystyle \sqrt{c^2 - a^2 - b^2}} + } + C \\[8pt] + \end{align*} + +\clearpage + +\question{10}{ + \[ + \int \frac{\dif x}{(a\sin x + b\cos x)^n} + \] +} + + Найдем рекуррентную формулу для следующего интеграла: + \begin{align*} + \int \frac{\dif x}{\sin^n x} + &= -\int \frac{\dif \cos x}{\sin^{n + 1} x}\\[6pt] + &= -\frac{\cos x}{\sin^{n + 1} x} - + \int \br{ \frac{1}{\sin^{n + 1} x} }' \cos x \dif x + &\explain{ + \displaystyle \int Fg \dif x = FG - \int fG \dif x\\ + \displaystyle F = \frac{1}{\sin^{n + 1} x}\\[10pt] + \displaystyle g = \frac{\dif \cos x}{\dif x}\\ + \displaystyle G = \cos x + } \\[8pt] + &= -\frac{\cos x}{\sin^{n + 1} x} - + (n + 1) \int \frac{\cos^2 x \dif x}{\sin^{n + 2} x} \\[8pt] + &= -\frac{\cos x}{\sin^{n + 1} x} - + (n + 1) \int \frac{(1 - \sin^2 x) \dif x}{\sin^{n + 2} x} \\[8pt] + &= -\frac{\cos x}{\sin^{n + 1} x} - + (n + 1) \int \frac{\dif x}{\sin^{n + 2} x} + + (n + 1) \int \frac{\dif x}{\sin^n x} + \end{align*} + + Пусть $\displaystyle J_n = \int \frac{\dif x}{\sin^n x}$. + + Переобозначим $n = n + 2$ в полученном интеграле, чтобы формула получилась красивой + \begin{align*} + J_{n - 2} &= -\frac{\cos x}{\sin^{n - 1} x} - (n - 1) J_n + (n - 1) J_{n - 2}\\[8pt] + (n - 1)J_n &= -\frac{\cos x}{\sin^{n - 1} x} + (n - 2)J_{n - 2}\\[8pt] + J_n &= \frac{\cos x}{(1 - n) \sin^{n - 1} x} + \frac{n - 2}{n - 1}J_{n - 2} + \end{align*} + + Тогда: + \begin{align*} + I_n = \int \frac{\dif x}{(a\sin x + b\cos x)^n} + &= \frac{1}{r} \int \frac{\dif x}{(\frac{a}{r}\sin x + \frac{b}{r}\cos x)^n} + &\explain{ + \displaystyle r = \sqrt{a^2 + b^2} + } \\[8pt] + &= \frac{1}{r} \int \frac{\dif x}{(\cos \phi \sin x + \sin \phi \cos x)^n} + &\explain{ + \displaystyle \phi = \arccos \frac{a}{r} = \arcsin \frac{b}{r} + } \\[8pt] + &= \frac{1}{r} \int \frac{\dif x}{(\sin (\phi + x))^n} \\[8pt] + &= \frac{\cos (\phi + x)}{r(1 - n) \sin^{n - 1} (\phi + x)} + + \frac{n - 2}{n - 1} I_{n - 2} \\[8pt] + &= \frac{\cos (\arccos{\frac{a}{\sqrt{a^2 + b^2}}} + x)} + {\sqrt{a^2 + b^2}(1 - n) \sin^{n - 1} (\arccos{\frac{a}{\sqrt{a^2 + b^2}}} + x)} + + \frac{n - 2}{n - 1} I_{n - 2} + \end{align*} + +\end{document} diff --git a/calc/sol0203.tex b/calc/sol0203.tex new file mode 100644 index 0000000..f568637 --- /dev/null +++ b/calc/sol0203.tex @@ -0,0 +1,282 @@ +\documentclass[10pt,a5paper]{article} +\usepackage[svgnames, rgb]{xcolor} + +\input{intro} + +\lhead{\color{gray} Шарафатдинов Камиль 192} +\rhead{\color{gray} \texttt{sol0203}} +\title{ДЗ на 10.02} +\author{Шарафатдинов Камиль БПМИ-192} +\date{билд: \today} + + +% -- Here bet dragons -- +\begin{document}\thispagestyle{empty} + +\maketitle +\clearpage +\setcounter{page}{1} + + +\newcommand{\deft}{\texttt{\\deft is undefined}} + + +\question{1.b}{ + \[ + \int \frac{\dif x}{\sqrt[6]{(x - 7)^7(x - 5)^5}} + = -3\sqrt[6]{\dfrac{x - 5}{x - 7}} + C + \] +} + + \begin{align*} + \int \frac{\dif x}{\sqrt[6]{(x - 7)^7(x - 5)^5}} + &= -6 \int \frac{t^7 \dif t}{t^7 \br{ \sqrt[6]{x - 5} }^5} + &\explain{ + \displaystyle t = \sqrt[6]{\frac{1}{x - 7}}\\[8pt] + \displaystyle \frac{\dif t}{\dif x} + = -\frac{1}{6} \br{ \sqrt[6]{\frac{1}{x - 7}} }^7 + = -\frac{1}{6} t^7 + }\\[8pt] + &= -6 \int \frac{\dif t}{\br{ \sqrt[6]{x - 5} }^5}\\[8pt] + &= -6 \int \frac{t^5 \dif t}{\br{ \sqrt[6]{1 + 2t^6} }^5} + &\explain{ + \dfrac{1}{\sqrt[6]{x - 5}} + &= \displaystyle \sqrt[6]{\frac{1}{\frac{1}{t^6} + 2}}\\[8pt] + &= \dfrac{t}{\sqrt[6]{1 + 2t^6}} + }\\[8pt] + &= 3 \int \frac{u^5 \dif u}{u^7} + = 3 \int \frac{\dif u}{u^2} + &\explain{ + \displaystyle u = \dfrac{1}{\sqrt[6]{1 + 2t^6}}\\ + \displaystyle \frac{\dif u}{\dif t} = -2t^5 u^7\\ + }\\ + &= -\frac{3}{u} + C\\ + &= -3\sqrt[6]{1 + 2t^6} + C\\ + &= -3\sqrt[6]{1 + \dfrac{2}{x - 7}} + C\\ + &= -3\sqrt[6]{\dfrac{x - 5}{x - 7}} + C + \end{align*} + +\clearpage + +\question{7.c}{ + \[ + \int \frac{\dif x}{1 + \sqrt{1 - 2x - x^2}} + \] +} + + Воспользуемся почти подстановкой Эйлера: + $ + \displaystyle \sqrt{ax^2 + bx + c} = xt - \sqrt{c} + $ + + \begin{align*} + \int \frac{\dif x}{1 + \sqrt{1 - 2x - x^2}} + &= \int \frac{\dif x}{xt} + &\explain{ + \displaystyle \sqrt{1 - 2x - x^2} = xt - 1\\[4pt] + \displaystyle 1 - 2x - x^2 = x^2t^2 - 2xt + 1\\[4pt] + \displaystyle x \br{ t^2 + 1 } = t - 1\\[4pt] + \displaystyle x = \dfrac{t - 1}{t^2 + 1}\\[16pt] + \displaystyle \dfrac{\dif x}{\dif t} = -2 \dfrac{t^2 - 2t - 1}{(t^2 + 1)^2} + }\\ + &= \int \frac{-2\dfrac{t^2 - 2t - 1}{(t^2 + 1)^2} \dif t} + {2\dfrac{t - 1}{t^2 + 1} t}\\[8pt] + &= -\int \frac{(t^2 - 2t - 1)(t^2 + 1) \dif t} + {(t - 1)(t^2 + 1)^2 t}\\[8pt] + &= -\int \frac{(t^2 - 2t - 1) \dif t} + {(t - 1)(t^2 + 1) t}\\[8pt] + &= -\int \br{ + \frac{2}{t^2 + 1} + \frac{1}{t} - \frac{1}{t - 1} + } \dif t\\[8pt] + &= -2\arctan t - \log{t} + \log(t - 1) + C\\[8pt] + &= -2\arctan \dfrac{\sqrt{1 - 2x - x^2} + 1}{x} + \log \dfrac{t - 1}{t} + C\\[8pt] + &= -2\arctan \dfrac{\sqrt{1 - 2x - x^2} + 1}{x} + + \log \dfrac{\sqrt{1 - 2x - x^2} + 1 - x}{\sqrt{1 - 2x - x^2} + 1} + C\\[8pt] + \end{align*} + +\clearpage + +\question{10.b}{ + \[ + \int \frac{x^8 \dif x}{\sqrt{x^2 + 1}} + \] +} + + Лемма (вообще говоря, это задача 9): + \begin{gather*} + P \in \mathbb{R}_n[x], \qquad + Q \in \mathbb{R}_{n - 1}[x], \qquad + R = \sqrt{ax^2 + bx + c} \implies + \int \frac{P \dif x}{R} = Q R + \lambda \int \frac{\dif x}{R}\\[16pt] + \br{ QR + \lambda \int \frac{\dif x}{R}}' = + Q'R + QR' + \frac{\lambda}{R} = + \frac{Q'R^2}{R} + \frac{Q(2ax + b)}{2R} + \frac{\lambda}{R} = + \frac{Q'R^2 + \frac{1}{2} Q(2ax + b) + \lambda}{R} + \end{gather*} + + Надо бы ещё доказать, что такое $Q$ всегда найдется, но нам достаточно того, что в задаче такой $Q$ есть. + + Тогда по лемме нам надо разложить $x^8$ на слагаемые $Q'(x^2 + 1) + Qx + \lambda$ + для некоторого $Q$. + + Пусть $Q = a_7x^7 + \ldots + a_0, \quad Q' = 7a_7x^6 + \ldots + a_1$ + + Получится система линейных уравнений, которую я выписывать не буду, а выпишу сразу ответ: + \[ + Q = \frac{1}{8}x^7 - \frac{7}{48} x^5 + \frac{35}{192} x^3 - \frac{35}{128} x, \quad \lambda = \frac{35}{128} + \] + + Тогда + + \begin{align*} + \int \frac{x^8 \dif x}{\sqrt{x^2 + 1}} &= \br{ + \frac{1}{8}x^7 - \frac{7}{48} x^5 + \frac{35}{192} x^3 - \frac{35}{128} x + } \sqrt{x^2 + 1} + \frac{25}{128}\int \frac{\dif x}{\sqrt{x^2 + 1}} \\[8pt]&= + \br{ + \frac{1}{8}x^7 - \frac{7}{48} x^5 + \frac{35}{192} x^3 - \frac{35}{128} x + } \sqrt{x^2 + 1} + \frac{25}{128} \log \left|x + \sqrt{x^2 + 1}\right| + C + \end{align*} + +\question{17.b}{ + \[ + \int \frac{(x + 3) \dif x}{(x^2 + 1)\sqrt{x^2 + x + 1}} + \] +} + + \newcommand{\brac}[2]{ \br{ \dfrac{#1}{#2} } } + \newcommand{\sbrac}[2]{ \br{ \frac{#1}{#2} } } + \renewcommand{\deft}{\br{ \sqrt{x^2 + x + 1} - x }} + + \begin{gather*} + \sqrt{x^2 + x + 1} = x + t\\ + x^2 + x + 1 = x^2 + 2xt + t^2 + \end{gather*} + \begin{align*} + x &= \frac{t^2 - 1}{1 - 2t}\\ + \dif x &= -\frac{2(t^2 - t + 1)}{(1 - 2t)^2} \dif t\\ + x + t &= \frac{t^2 - t + 1}{2t - 1}\\ + x + 3 &= \frac{t^2 - 6t + 2}{1 - 2t}\\ + x^2 + 1 &= \frac{t^4 + 2t^2 - 4t + 2}{(1 - 2t)^2} + \end{align*} + + \begin{align*} + \int \frac{(x + 3) \dif x}{(x^2 + 1)\sqrt{x^2 + x + 1}} + &= -2 \int \frac{(x + 3)(t^2 - t + 1)\dif t}{(x^2 + 1)(x + t)(1 - 2t)^2}\\[8pt] + &= -2 \int \frac{ + \brac{t^2 - 6t + 2}{1 - 2t}(t^2 - t + 1) \dif t + }{ + \brac{t^4 + 2t^2 - 4t + 2}{(1 - 2t)^2} + \brac{t^2 - t + 1}{2t - 1} + (1 - 2t)^2 + }\\[8pt] + &= -2 \int - \frac{t^2 - 6t + 2}{t^4 + 2t^2 - 4t + 2} \dif t\\[8pt] + &= 2 \int \frac{t^2 - 6t + 2}{t^4 + 2t^2 - 4t + 2} \dif t\\[8pt] + &= \frac{1}{\sqrt{2}} \int \br{ + \frac{2 t - 3 \sqrt2 + 4}{-t^2 + \sqrt2 t + \sqrt2 - 2} + + \frac{2 t + 3 \sqrt2 + 4}{t^2 + \sqrt2 t + \sqrt2 + 2} + } \dif t\\[8pt] + \end{align*} + + \renewcommand{\deft}{t} + \def\firstdenum{\br{ \deft - \frac{\sqrt2}{2} }^2 + \sbrac{\sqrt{6 - 4\sqrt2}}{2}^2} + \def\firstpoly{ \deft^2 - \sqrt2 \deft - \sqrt2 + 2 } + \def\firstsqrt{ \sqrt{6 - 4\sqrt2} } + + \def\seconddenum{ \br{ \deft + \frac{\sqrt2}{2} }^2 + \sbrac{\sqrt{6 + 4\sqrt2}}{2}^2 } + \def\secondpoly{ \deft^2 + \sqrt2 \deft + \sqrt2 + 2 } + \def\secondsqrt{ \sqrt{6 + 4\sqrt2} } + + \begin{align*} + \int \frac{2 t - 3 \sqrt2 + 4}{-t^2 + \sqrt2 t + \sqrt2 - 2}\dif t + &= -2 \int \frac{t - \frac{3\sqrt2}{2} + 2}{\firstdenum}\dif t\\[8pt] + &= -2 \int \frac{t - \frac{\sqrt2}{2}}{\firstdenum} \dif t + -2 \int \frac{-\sqrt2 + 2}{\firstdenum} \dif t\\[8pt] + &= - \int \frac{\dif \br{ \firstpoly }}{\firstpoly} \dif t + +2(\sqrt2 - 2) \frac{2}{\firstsqrt} \arctan \frac{2t - \sqrt2}{\firstsqrt}\\[8pt] + &= -\log{ \left|\firstpoly\right| } - + 4\arctan \frac{2t - \sqrt2}{\firstsqrt} + C_1 + \end{align*} + + \begin{align*} + \int \frac{2 t + 3 \sqrt2 + 4}{\secondpoly}\dif t + &= \int \frac{2t + 3\sqrt2 + 4}{\seconddenum} \dif t\\[8pt] + &= \int \frac{2t + \sqrt2}{\seconddenum} + + \int \frac{2\sqrt2 + 4}{\seconddenum}\\[8pt] + &= \log{ \left|\secondpoly\right| } + + 2(\sqrt2 + 2)\frac{2}{\secondsqrt} \arctan \frac{2t + \sqrt2}{\secondsqrt} + C_2\\[8pt] + &= \log{ \left|\secondpoly\right| } + + 4\arctan \frac{2t + \sqrt2}{\secondsqrt} + C_2 + \end{align*} + + \begin{align*} + \int \frac{(x + 3) \dif x}{(x^2 + 1)\sqrt{x^2 + x + 1}} + &= -\log{ \left|\firstpoly\right| } - + 4\arctan \frac{2t - \sqrt2}{\firstsqrt}\\[8pt] + & +\log{ \left|\secondpoly\right| } + + 4\arctan \frac{2t + \sqrt2}{\secondsqrt} + C\\[8pt] + \end{align*} + \renewcommand{\deft}{\br{\sqrt{x^2 + x + 1} - x}} + \begin{align*} + &= -\log{ \left|\firstpoly\right| } - + 4\arctan \frac{2\deft - \sqrt2}{\firstsqrt}\\[8pt] + & +\log{ \left|\secondpoly\right| } + + 4\arctan \frac{2\deft + \sqrt2}{\secondsqrt} + C + \end{align*} + +\clearpage +\question{17.c}{ + \[ + \int \frac{\dif x}{(x^3 - x)\sqrt{x^2 + x + 4}} + \] +} + \begin{gather*} + \sqrt{x^2 + x + 4} = x + t\\ + x^2 + x + 4 = x^2 + 2xt + t^2 + \end{gather*} + \begin{align*} + x &= \frac{t^2 - 4}{1 - 2t}\\ + \dif x &= -\frac{2(t^2 - t + 4)}{(1 - 2t)^2} \dif t\\ + x + t &= \frac{t^2 - t + 4}{2t - 1} + \end{align*} + + \medskip + + \renewcommand{\deft}{\sqrt{x^2 + x + 4} - x} + + \begin{align*} + \int \frac{\dif x}{(x^3 - x)\sqrt{x^2 + x + 4}} + &= \int \frac{\dif x}{x(x + 1)(x - 1)\sqrt{x^2 + x + 4}}\\[8pt] + &= -\int \frac{2(t^2 - t + 4) \dif t}{(1 - 2t)^2 x(x + 1)(x - 1)(x + t)}\\[8pt] + &= -2\int \frac{(t^2 - t + 4) \dif t}{ + (1 - 2t)^2 + \brac{t^2 - 4}{1 - 2t} + \brac{t^2 - 5 + 2t}{1 - 2t} + \brac{t^2 - 3 - 2t}{1 - 2t} + \brac{t^2 - t + 4}{2t - 1} + }\\[8pt] + &= 2 \int \frac{(1 - 2t)^2 \dif t}{ + (t^2 - 4)(t^2 + 2t - 5)(t^2 - 2t - 3) + }\\[8pt] + &= 2 \int \frac{(1 - 2t)^2 \dif t}{ + (t - 2)(t + 2)(t - \sqrt{6} + 1)(t + \sqrt{6} + 1)(t + 1)(t - 3) + }\\[8pt] + &= 2\int \br{ + -\frac{1}{t^2 - 4} + -\frac{1}{8(t + 1)} + +\frac{1}{8(t - 3)} + -\frac{1}{4\sqrt{6}(t + \sqrt{6} + 1)} + +\frac{1}{4\sqrt{6}(t - \sqrt{6} + 1)} + } \dif t\\[8pt] + &= -\arctan \frac{t}{2} + -\frac{1}{4}\log |t + 1| + +\frac{1}{4}\log |t - 3| + -\frac{1}{2\sqrt{6}}\log |t + \sqrt{6} + 1| + +\frac{1}{2\sqrt{6}}\log |t - \sqrt{6} + 1|\\[8pt] + &= -\arctan \frac{\deft}{2} + -\frac{1}{4}\log |\deft + 1| + +\frac{1}{4}\log |\deft - 3|\\[8pt] + &-\frac{1}{2\sqrt{6}}\log |\deft + \sqrt{6} + 1| + +\frac{1}{2\sqrt{6}}\log |\deft - \sqrt{6} + 1|\\[8pt] + \end{align*} + +\end{document} diff --git a/calc/sol0210.tex b/calc/sol0210.tex new file mode 100644 index 0000000..bb4ad94 --- /dev/null +++ b/calc/sol0210.tex @@ -0,0 +1,56 @@ +\documentclass[10pt,a5paper]{article} +\usepackage[svgnames, rgb]{xcolor} + +\input{intro} + +\lhead{\color{gray} Шарафатдинов Камиль 192} +\rhead{\color{gray} \texttt{sol0203}} +\title{ДЗ на 10.02} +\author{Шарафатдинов Камиль БПМИ-192} +\date{билд: \today} + + +% -- Here bet dragons -- +\begin{document}\thispagestyle{empty} + +\maketitle +\clearpage +\setcounter{page}{1} + +\question{1.f}{ + \[ + \int_1^e \sin \log x \dif x + \] +} + + \begingroup + \setlength{\jot}{8pt} + \begin{align*} + I = \int \sin \log \dif x + &= \int e^u \sin u \dif u + &\explain{ + \displaystyle u = \log x\\ + \displaystyle \dif u = \frac{\dif x}{x} = \frac{\dif x}{e^u} + }\\ + &= - e^u \cos u + \int e^u \cos u \dif u\\ + &= - e^u \cos u + e^u \sin u - \int e^u \sin u \dif u + \end{align*} + \endgroup + + \begin{flalign*} + 2I = e^u (\sin u - \cos u) + C\\ + I = \frac{e^u}{2} (\sin u - \cos u) + C = + \frac{x}{2} (\sin \log x - \cos \log x) + C + \end{flalign*} + + \[ + \int_1^e \sin \log x \dif x = + \frac{e}{2} (\sin 1 - \cos 1) - \frac{1}{2} (0 - 1) = + \frac{e}{2} (\sin 1 - \cos 1) + \frac{1}{2} + \] + +\vspace*{\fill} + + P.S. Ну проверь хотя бы одну задачу, пожаааалуйста + +\end{document} |